5.1 Problems

Question 1. Find the area of the shaded region:
(a)

print of intersection:

$$
\begin{aligned}
& 6-x^{2}=x \\
& x^{2}+x-6=0 \\
& (x+3) x-2)=0 \\
& x=-3,2
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{2}\left(6-x^{2}\right)-x d x & =\left.\left(6 x-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right)\right|_{0} ^{2} \\
& =10-8 / 3
\end{aligned}
$$

(b)

paint of inter sect iv n:

$$
\begin{aligned}
& 4-2 x=x+1 \Rightarrow x=1 \\
& \int_{1}^{2}(x+1)-(4-2 x) d x+\int_{2}^{4}(x+1) d x \\
&= \int_{1}^{2}(3 x-3) d x+\int_{2}^{4}(x+1) d x \\
&=\left.\left(\frac{3}{2} x^{2}-3 x\right)\right|_{1} ^{2}+\left.\left(\frac{1}{2} x^{2}+x\right)\right|_{2} ^{4} \\
&= 7
\end{aligned}
$$

(c)

(d)

point of intersection

$$
x^{2}=4-x^{2} \Rightarrow x= \pm \sqrt{2}
$$

$x$-intercept

$$
\begin{aligned}
& 4-x^{2}=0 \Rightarrow x= \pm 2 \\
& \int_{0}^{\sqrt{2}}\left(4-x^{2}-x^{2}\right) d x+\int_{\sqrt{2}}^{2}\left(x^{2}-\left(4-x^{2}\right)\right) d x \\
= & \int_{0}^{\sqrt{2}}\left(4-2 x^{2}\right) d x+\int_{\sqrt{2}}^{2}\left(2 x^{2}-4\right) d x \\
= & 4 x-\left.\frac{2}{3} x^{3}\right|_{0} ^{\sqrt{2}}+\left.\left(\frac{2}{3} x^{3}-4 x\right)\right|_{\sqrt{2}} ^{2} \\
= & \frac{16 \sqrt{2}}{3}+\frac{8}{3}
\end{aligned}
$$

puint of intersectim

$$
\begin{aligned}
& y^{2}-4 y=2 y-y^{2} \\
& \Rightarrow 2 y^{2}=6 y \Rightarrow y=0,3 \\
& \int_{0}^{3}-\left(y^{2}-4 y\right)+\left(2 y-y^{2}\right) d y \\
&= \int_{0}^{3}-\left(2 y^{2}-6 y\right) d y \\
&=\left.\left(\frac{2}{3} y^{3}+3 y^{2}\right)\right|_{0} ^{3} \\
&= \frac{2}{3} \cdot 27+3 \cdot 9 \\
&= 9
\end{aligned}
$$

Question 2. Sketch the region enclosed by the given curves. Decide whether to integrate with respect to $x$ or to $y$ then find the area of the region.
(a) $y=\sin x, y=x, x=\pi / 2, x=\pi$.


$$
x=3-y^{2} / 4
$$

(b) $4 x+y^{2}=12, x=y \quad$ points of intersection:

$$
\begin{aligned}
& \\
&=\left(3-y^{2} / 4=y\right. \\
& y^{2}+4 y-12=0 \\
&=\left.\left.\left(3-y^{2} / 4-\frac{1}{12} y^{3}-\frac{1}{2} y^{2}\right) \right\rvert\,-6\right)=0
\end{aligned}
$$

Question 3. Sketch the region enclosed by the given curves: $y=\frac{x^{2}}{4}, \quad y=2 x^{2}, x+y=3, x \geq 0$.
Find the area of the region.


$$
y=3-x
$$

point of intersection: $2 x^{2}=3-x \Rightarrow$

$$
\begin{aligned}
& \int_{0}^{1} 3-x-2 x^{2} d x \\
= & \left.\left(3 x-\frac{1}{2} x^{2}-\frac{2}{3} x^{3}\right)\right|_{0} ^{1} \\
= & \frac{11}{6}
\end{aligned}
$$

Question 4. Use calculus to find the area of the triangle with vertices $(0,0),(3,0)$, and $(2,3)$.

$$
\begin{aligned}
& y=\frac{3}{2} x+\left\{\begin{array}{l}
2,3) \\
x \rightarrow-3 x+9 \\
\rightarrow
\end{array} \quad y-0=\frac{0-3}{3-2}(x-3)\right. \\
& y=-3 x+9 \\
& y-0=\frac{3-0}{2-0}(x-0) \\
& y=\frac{3}{2} x
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2} \frac{3}{2} x d x+\int_{2}^{3}(-3 x+5) d x \\
& =\left.\frac{3}{4} x^{2}\right|_{0} ^{2}+\left.\left(-\frac{3}{2} x^{2}+5 x\right)\right|_{2} ^{3} \\
& =3+3 / 2
\end{aligned}
$$

