4.4 Problems

Question 1. Evaluate the general indefinite integral.

$$
\text { (a) } \begin{aligned}
& \int(u+2)(3-u) d u \\
= & \int\left(-u^{2}+u+6\right) d u \\
= & -\frac{1}{3} u^{3}+\frac{1}{2} u^{2}+6 u+C
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\int \frac{\sin 2 x}{\cos x} d x & =\int \frac{2 \sin x \cos x}{\cos x} d x \\
& =-2 \cos x+C
\end{aligned}
$$

Question 2. Verify that the formula: $\int \cos ^{3} x d x=\sin x-\frac{1}{3} \sin ^{3} x+C$ is correct.

$$
\begin{aligned}
\frac{d}{d x}\left(\sin x-\frac{1}{3} \sin ^{3} x+c\right) & =\cos x-\sin ^{2} x \cdot \cos x \\
& =\cos x\left(1-\sin ^{2} x\right) \\
& =\cos x \cdot \cos ^{2} x \\
& =\cos ^{3} x
\end{aligned}
$$

so the antiderivative of $\cos ^{3} x$ is $\sin x-\frac{1}{3} \sin ^{3} x+C$

Question 3. If $h^{\prime}(t)$ the the rate of growth of Ryan in inches/year what does $\int_{5}^{8} h^{\prime}(t) d t$ represent? the total change of Ryan's height from years to year 8

Question 4. Water flows from the bottom of a storage tank at a rate of $r(t)=10-2 t$ liters per minute, where $0 \leq t \leq 5$.
(a) After a minute a 10 liter bucket is placed under the storage tank to catch the water. How long until the bucket starts to overflow?

$$
\begin{aligned}
& 10=\int_{1}^{b}(10-2 t) d t=\left.\left(10 t-t^{2}\right)\right|_{1} ^{b}=10 b-b^{2}-(10-1) \\
& \Leftrightarrow \quad b^{2}-10 b+19=0 \\
& b=5+26 \text { or } 5-\sqrt{6} \mathrm{~min}
\end{aligned}
$$

(b) At $t=4$ another 10 liter bucket is placed under the storage tank to catch the water. How much water does this bucket have in it at the end? $t=5$

$$
\begin{aligned}
\text { Whee of water at the end } & =\int_{4}^{5}(10-2 t) d t \\
& =\left.\left(10 t-t^{2}\right)\right|_{4} ^{5} \\
& =10-25-(40-16) \\
& =1 \text { Liter }
\end{aligned}
$$

