3.9 Problems

Standard Problems
Example 1. Find the most general antiderivative of the function:
(a) $f(x)=\sqrt{x^{3}}+\sqrt[3]{x^{2}}=x^{3 / 2}+x^{2 / 3}$

$$
F(x)=\frac{2}{5} x^{5 / 2}+\frac{3}{5} x^{5 / 3}+c
$$

(b) $g(x)=8 x-3 \sec ^{2} x$

$$
G(x)=8 \cdot \frac{1}{2} x^{2}-3 \tan x+C
$$

(c) $h(t)=\frac{3-t+t^{2}}{\sqrt{t}}=3 t^{-\frac{1}{2}}-t^{\frac{1}{2}}+t^{3 / 2}$

$$
H(t)=6 t^{\frac{1}{2}}-\frac{2}{3} t^{3 / 2}+\frac{2}{5} t^{5 / 2}+C
$$

Example 2. Find the function $f$ that satisfies: $\quad f^{\prime \prime}(t)=\sin t+\cos t, \quad f^{\prime}(0)=4, \quad f(0)=3$.

$$
\begin{aligned}
& \left.f^{\prime}(t)=-\cos t+\sin t+c, 1\right) \text { antiderivative } \\
& f^{\prime}(0)=-1+c \\
& f^{\prime}(0)=4 \\
& f^{\prime}(t)=-\cos t+\sin t+5 \quad \text { Jantiderivative } \\
& f(t)=-\sin t-\cos t+5 t+c \\
& f(0)=-1+c=3 \Rightarrow c=4) \text { plug in }
\end{aligned}
$$

plan (2) into (1):

Example 3. Solve the initial value problem: $\quad f^{\prime \prime}(x)=3 / \sqrt{x}, \quad f^{\prime}(4)=7, \quad f(4)=20$.

$$
\begin{align*}
& \left.f^{\prime}(x)=3 \cdot 2 x^{\frac{1}{2}}+C \quad 11\right)^{=3 x^{-\frac{1}{2}}} \\
& \left.f^{\prime}(4)=3 \cdot 2 \cdot 2+C\right\} \Rightarrow C=-5 \\
& f^{\prime}(4)=7
\end{align*}
$$

plug (4) int (3)
plug (2) into (1): $f^{\prime}(x)=6 x^{\frac{1}{2}}-5$

$$
\begin{align*}
\Rightarrow f(x) & \left.=6 \cdot \frac{2}{3} \cdot x^{3 / 2}-5 x+c \quad 13\right)  \tag{3}\\
f(4) & =4 \cdot 8-5 \cdot 4+c=20 \Rightarrow c=8 \tag{4}
\end{align*}
$$

$$
f f(x)=4 x^{3 / 2}-5 x+8
$$

Example 4. Find the position of the particle given the following data:

$$
\begin{aligned}
& \left(S^{\prime}(t)\right)^{\prime}=t^{2}-4 t+6 \text { take antiderivaniu } \uparrow(t)=t^{2}-4 t+6, \quad s(1)=20, \quad s(0)=0 . \\
\Rightarrow & S^{\prime}(t)=\frac{1}{3} t^{3}-4 \cdot \frac{1}{2} t^{2}+6 t+C_{1}
\end{aligned}
$$

2 take antiderivative

$$
\Rightarrow \quad S(t)=\frac{1}{3} \cdot \frac{1}{4} t^{4}-4 \cdot \frac{1}{2} \cdot \frac{1}{3} t^{3}+6 \cdot \frac{1}{2} t^{2}+C_{1} t+C_{2}
$$

Use the two initial conditions $S(1)=20, S(0)=0$ to determine $C_{1}, L_{2}$.

$$
\left.\begin{array}{rl}
20 & =s(1)=\frac{1}{3} \cdot \frac{1}{4} \cdot 1-4 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot 1+b \cdot \frac{1}{2} \cdot 1+c_{1} 1+c_{2} \\
0 & =s(0)=0-0+0+0+c_{2}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
c_{2}=0 \\
c_{1}=17 \frac{7}{12}
\end{array}\right.
$$

## Graphing Problems

Example 5. Sketch an antiderivative of $f$ below:


Example 6. Sketch an antiderivative of $f$ below:



Tougher Problems
Example 7. Give an example of a derivative $f^{\prime}$ so that while solving the initial value problem with $f(0)=0$ we have $C \neq 0$.

$$
\begin{gathered}
f^{\prime}(x)=\sin x \\
f(x)=-\cos x+c \\
f(0)=-1+c=0 \\
c=1
\end{gathered}
$$

Since $\left(\neq 0\right.$, this $f^{\prime}$ meet the requirement
Example 8. Given that the graph of $f$ passes through the point $(1,6)$ and that the slope of its tangent line at $(x, f(x))$ is $2 x+1$ find $f(2)$.

$$
\begin{aligned}
& \text { f(1) }=6 \\
& f^{\prime}(x)=2 x+1 \\
& f(x)=x^{2}+x+c \\
& 6=f(1)=1+1+c \Rightarrow c=4 \\
& \text { so antidesiuntive } f(x)=x^{2}+x+4
\end{aligned}
$$

Example 9. Find a function $f$ such that $f^{\prime}(x)=x^{3}$ and $x+y=0$ is a tangent line to the graph of $f$.

$$
\text { untidrisatile) } \quad y=-x
$$

$$
f(x)=\frac{1}{4} x^{4}+C
$$


suppose $y=-x$ is tangent to $f, x)$ at a
from the figure, we can see this means

$$
\left.\begin{array}{l}
f(a)=-a \\
f^{\prime}(a)=-1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\frac{1}{4} a^{4}+c=-a \\
a^{3}=-1
\end{array} \Rightarrow \begin{array}{l}
a=-1 \\
c=\frac{5}{4}
\end{array}\right.
$$

