3.8 Problems

Newton's Method

Example 1. Understanding Newton's method

(a) Using the graph of $f(x) = x^2 - 1$ and a starting value of $x_1 = 2$, draw the first 3 iterations of Newton's Method.

(b) Using a picture and the definition of slope, derive the recursive formula for Newton's Method.

$$\chi^{k} = \chi^{k+1} - \frac{f(\chi^{k+1})}{f'(\chi^{k+1})}$$

MTH132 - Examples

Example 2. For each initial approximation, determine graphically what happens if Newton's method is used for the function whose graph is shown.

_

Example 3. Use Newton's method with $x_1 = 1$ to find x_3 for the equation $x^5 - x - 1 = 0$

 $f_{1}x_{1}$ $f_{1}'x_{1} = 5x^{4} - 1$

$$\begin{array}{l} \chi_{1} = 1 \\ \chi_{2} = 1 - \frac{f_{11}}{f_{11}} = 1 - \frac{-1}{4} = \frac{5}{4} \\ \chi_{3} = \frac{1}{4} - \frac{f_{4}}{f_{14}} \\ \chi_{4} = \frac{1}{4} - \frac{f_{4}}{f_{14}} \\ \chi_{5} = \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \\ \chi_{6} = \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \\ \chi_{7} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \\ \chi_{7} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \\ \chi_{7} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \\ \chi_{7} = \frac{1}{4} + \frac{$$

Example 4. Use Newton's method to approximate a solution to $3\cos x = x - 1$ as follows: Let $x_1 = 1$ be the initial approximation. Find the next two approximations, x_2 and x_3 , to four decimal places each.

$$\frac{3}{405} \times = \pi - 1$$
(=) $\frac{3}{405} \times -\pi + 1 = 0$

$$\frac{1}{10}$$

$$\frac{$$

Example 5. Use Linearization to approximate $\sqrt[4]{17}$.

$$\begin{aligned} |et \quad f(x) &= \frac{4}{3}x \quad \text{then } \frac{4}{3}\eta = f(17) \\ x_0 &= 17 \quad \alpha = 16 \quad , \quad f'(x) = \frac{1}{4}x^{-\frac{3}{4}} \quad f(a) = \frac{4}{316} = 2 \quad , \quad f'(a) = \frac{1}{32} \\ f(17) &\approx L(17) \\ &= f(a) + f'(a)(x_0 - a) \\ &= 2 + \frac{1}{32}(17 - 16) = \frac{65}{32} \end{aligned}$$

Example 6. Newton's Method to approximate $\sqrt[4]{17}$. Make good choice for x_1 then calculate x_2 and x_3 .

To approximate a number
$$4\sqrt{17}$$
, set
 $\chi = 4\sqrt{17}$ (1)
Then $4\sqrt{17}$ is the solution to (1). Simplify (1) by raising both hand side to the 4th
power
 $\chi^4 = 17$
 $\chi^4 = 17 = 0$
 $f(x) = 4x^3$
choole $\chi_1 = 4\sqrt{16} = 2$, then run Newton's iteration
 $\chi_2 = 2 - \frac{f(x)}{f(x)} = 2 - \frac{-1}{32} = \frac{\sqrt{5}}{32}$
MSU
 $\chi_3 = \chi_2 - \frac{+N_2}{f'(X_2)} = 4 = \frac{\sqrt{5}}{32} - \frac{(\frac{\sqrt{5}}{4\sqrt{5}})^4 - 17}{4\sqrt{5}\sqrt{3}} \approx 2.0$