3.8 Problems

Newton's Method

Example 1. Understanding Newton's method
(a) Using the graph of $f(x)=x^{2}-1$ and a starting value of $x_{1}=2$, draw the first 3 iterations of Newton's Method.

(b) Using a picture and the definition of slope, derive the recursive formula for Newton's Method.

$$
x^{k}=x^{k-1}-\frac{f\left(x^{(k-1)}\right)}{f^{\prime}\left(x^{k-1}\right)}
$$

Example 2. For each initial approximation, determine graphically what happens if Newton's method is used for the function whose graph is shown.
(a) $x_{1}=0$ diverge
(b) $x_{1}=1$ tangent line is horizontal, cannot find x_{2}
(c) $x_{1}=3$ converge to the root $x=2$
(d) $x_{1}=4$ tangent line is horizontal, cannot find x_{2}
(e) $x_{1}=5$ converge to the root $x=6$

Example 3. Use Newton's method with $x_{1}=1$ to find x_{3} for the equation $x^{5}-x-1=0$

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{-1}{4}=\frac{5}{4} \\
& x_{3}=\frac{5}{4}-\frac{f\left(\frac{5}{4}\right)}{f^{\prime}\left(\frac{5}{4}\right)} \approx 1.178
\end{aligned}
$$

Example 4. Use Newton's method to approximate a solution to $3 \cos x=x-1$ as follows: Let $x_{1}=1$ be the initial approximation. Find the next two approximations, x_{2} and x_{3}, to four decimal places each.

$$
\begin{aligned}
& 3 \cos x=x-1 \\
& \Leftrightarrow \quad \underbrace{3 \cos x-x+1}_{f(x)}=0
\end{aligned}
$$

Use Newton's method to find a root ut this fix)

$$
\begin{aligned}
& f_{1}^{\prime}(x)=-3 \sin x-1 \\
& x_{1}=1 \\
& x_{2}=1-\frac{f_{1} 11}{f^{\prime}(1)}=1-\frac{3 \cos 1}{-3 \sin 1-1} \approx 3.85 \\
& x_{3}=3.85-\frac{f^{\prime}(3.85)}{f^{\prime}(3.85)} \approx 4
\end{aligned}
$$

Example 5. Use Linearization to approximate $\sqrt[4]{17}$.

$$
\begin{aligned}
\text { let } f(x) & =\sqrt[4]{x} \text { then } \sqrt[4]{17}=f(17) \\
x_{0} & =17 \quad a=16, f^{\prime}(x)=\frac{1}{4} x^{-3 / 4} \quad f(a)=\sqrt[4]{16}=2, f^{\prime}(a)=\frac{1}{32} \\
f(17) & \approx 4(17) \\
& =f(a)+f^{\prime}(a)\left(x_{0}-a\right) \\
& =2+\frac{1}{42}(17-16)=\frac{65}{32}
\end{aligned}
$$

Example 6. Newton's Method to approximate $\sqrt[4]{17}$. Make good choice for x_{1} then calculate x_{2} and x_{3}.
To approximate a number $\sqrt[4]{17}$, set

$$
\begin{equation*}
x=\sqrt[4]{17} \tag{1}
\end{equation*}
$$

Then $\sqrt[4]{17}$ is the solution to (1). Simplity 11) by raising both hand side to the 4th power

$$
\begin{aligned}
& x^{4}=17 \\
& \underbrace{x^{4}-17}_{f(x)}=0 \\
& \Rightarrow f^{\prime}(x)=4 x^{3}
\end{aligned}
$$

choose $x_{1}=\sqrt[4]{16}=2$, then run Newton's iteration

$$
\begin{aligned}
& x_{2}=2-\frac{f(2)}{f^{\prime}(2)}=2-\frac{-1}{32}=\frac{65}{32} \\
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \quad 4=\frac{65}{32}-\frac{(65 / 32)^{4}-17}{4(65 / 32)^{3}} \approx 2.03
\end{aligned}
$$

