3.7 Problems

Example 1. A baseball team plays in a stadium that holds 55,000 spectators. With ticket prices at $\$ 10$, the average attendance had been 27,000 . When ticket prices were lowered to $\$ 8$, the average attendance rose to 33,000 .
(a) Find the demand function, assuming that it is linear.

$$
\left.\begin{array}{ll}
y=\ln x+b & (10,27000) \\
\uparrow & \uparrow \text { pice these pants } t \\
(8,3300)
\end{array}\right) \text { find mand } b \text {. }
$$

demand price

$$
\left.\begin{array}{l}
m=\frac{33000-2700}{8-10}=-300 \\
2700=-300 \cdot 10+b \Rightarrow b=57000
\end{array}\right\} y=-3000 x+57000
$$

(b) How should ticket prices be set to maximize revenue?

$$
\begin{aligned}
& R \text { : revenue } \\
& R=x \cdot y \quad(x \geq 0,0 \leq y \leq 55000) \leftarrow \quad y \geq 0 \text { and } 11) \text { imply } \\
& =x(-3000 x+5700) \quad x \in\left[\frac{2}{3} 19\right] \quad-3000 x+57000 \geq 0 \\
& =-300 x^{2}+57 \omega 0 x \\
& R^{\prime}=-\operatorname{bon} x+5700 \\
& \text { witical point is } \frac{57000}{6000}=9.5 \\
& R(9,5)=270750 \in \text { largest } \\
& R\left(\frac{2}{3}\right) \approx 36900 \\
& R(19)=0 \\
& \text { price should be set } t 9.5
\end{aligned}
$$

Example 2.
Find an equation of the line through the point $(3,5)$ that cuts off the least area from the first quadrant.

A: shaded area

$$
A=\frac{1}{2} b L
$$

b and h are the x and y intercepts of the line. since the line passes $(3,5)$, it has the expression

$$
\begin{align*}
& y-5=m(x-3) \\
\Leftrightarrow & y=m x-3 m+5 \tag{12}
\end{align*}
$$

its y-intercept is $-3 m+5, x$-intercept is $\frac{3 m-5}{m}$

$$
\text { its } y \text {-intercept is }-3 m+1 \text { po } b=\frac{3 m-5}{m}, h=-3 m+5 \quad \text { plugging these int (1) }
$$

$$
A=\frac{1}{2}(-3 m+5) \cdot \frac{3 m-5}{m}
$$

$$
=-\frac{1}{2} \frac{(3 m-5)^{2}}{m}
$$

$$
=-\frac{1}{2}\left(9 m-30+\frac{25}{m}\right)
$$

$$
A^{\prime}=-\frac{1}{2}\left(q-\frac{25}{m^{2}}\right)
$$

w!tical point $m=\frac{\forall}{3},-\frac{5}{3}$
insert $m=-5 / 3$ into 12), we get the line equation

$$
y=-\frac{5}{3} x+10
$$

Example 3.
Ryan is at point R on the shore of a circular lake with radius 2 mi and all of a sudden really has to use the bathroom which is at point B diametrically opposite R (see the picture to the right). He can run at the rate of $8 \mathrm{mi} / \mathrm{h}$ and row a boat at $4 \mathrm{mi} / \mathrm{h}$. How should he proceed?

$$
\text { time to boat from } R \text { to } A: \frac{\text { length of } R A}{4}
$$

'1 speed of boating

$$
\text { time to run from } A \text { to } B: \frac{\text { arc length of } \overline{A B}}{8}
$$

T: total time

$$
\begin{align*}
& T=\frac{\text { length of } R A}{4}+\frac{\operatorname{arc} \text { length of } \widehat{A B}}{8} \tag{1}
\end{align*}
$$

In terms of θ : length of $R A=2 \cdot \cos \theta \cdot 2=4 \cos \theta$
pray 12) (3) into (1):

$$
\begin{aligned}
& T=\frac{4 \cos \theta}{4}+\frac{4 \theta}{8}=\cos \theta+\frac{\theta}{2}\binom{\text { by definition of } \theta}{0 \leq \theta \leq \pi / 2} \\
& T^{\prime}=-\sin \theta+\frac{1}{2}
\end{aligned}
$$

$s \rightarrow$ witical point is: $\sin \theta=\frac{1}{2}$

$$
\Leftrightarrow \theta=\frac{\pi}{6}
$$

so he should bout towards an angle of $\frac{\pi}{6}$, and run $\hbar B$ once arriving at A.

Example 4. A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of the materials for the cheapest such container.

$$
\begin{aligned}
& \text { C:lost basearea area of the } 4 \text { sides } \\
& \downarrow \\
& C=10 \cdot(w \cdot 2 \omega)+6 \cdot(6 d w) \quad 1) \\
& \text { Lost per square wot persquare meter } \\
& \text { meter for the tue for the sides }
\end{aligned}
$$

volume is 10 means

$$
\begin{aligned}
& 10=d \cdot w \cdot 2 w \\
& \left.\Rightarrow \quad d=\frac{10}{2 w^{2}}=\frac{5}{w^{2}} \quad 12\right)
\end{aligned}
$$

plug 2 (int (1)

$$
C=20 \omega^{2}+\frac{36 \cdot 5}{w}
$$

$$
c^{\prime}=40 w-\frac{180}{w^{2}}
$$

critical point is $\left(\frac{9}{2}\right)^{1 / 3}$

$$
c\left(\left(\frac{4}{2}\right)^{1 / 3}\right) \approx 163.54 \leftarrow \text { cheapest }
$$

