3.3 Problems Part 2

Give Examples of...

Question 1. If possible, give an example of a function f that satisfies:

- f is decreasing on $[1,5]$
- f is concave up on $[1,5]$.

Represent f as
(a) A sketch of a graph
(b) An equation

If it is not possible explain why.

Question 2. If possible, give an example of a function f that satisfies:

- f is increasing on $[1,5]$
- f is concave up on $[1,3)$ and is concave down on $(3,5]$.

Represent f as
(a) A sketch of a graph
(b) An equation

If it is not possible explain why.

Question 3. If possible, give an example of a function f that satisfies:

- f is increasing on $[-1,2)$ and decreasing on $(2,4]$.
- f is neither concave up or concave down on $[-1,4]$.

Represent f as
(a) A sketch of a graph
(b) An equation

If it is not possible explain why.

Question 4. If possible, give an example of a function f that satisfies:

- f is neither increasing nor decreasing on $[1,4]$.
- f is concave up on $[1,4]$.

Represent f as
(a) A sketch of a graph Not possible
(b) An equation

If it is not possible explain why. Be (aube if $f^{\prime}(x)=0$ on $[1.4]$, then $f(x)=$ instant, this f is not concave up

Question 5. Consider the function $f(x)=\frac{1}{x}+\frac{x}{16}$. Find where:
(a) f is increasing/decreasing domain $(-\infty, 0) \cup(0, \infty)$
(b) f is concave up/down
(c) Identify any local mine, local maxes, and inflection points.
(a) $f^{\prime}(x)=-x^{-2}+\frac{1}{16}$
$f^{\prime}(x)$ is undefined at 0

$$
f^{\prime}(x)=0 \text { when }-x^{-2}+\frac{1}{16}=0
$$

$$
\Rightarrow x= \pm 4
$$

$f^{\prime}(x)$

$f(x)$ is increasing on $(-\infty,-4) \cup(4, \infty)$ decreasing on $(-4,0) \cup(0,4)$
(b) $f^{\prime \prime}(x)=2 x^{-3}$

concave up on $(0, \infty)$ concave down on $(-\infty, 0)$
(C) Weal max cat $x=-4$
local min at $x=4$
no inflection point (as 0 is not in the domain)

Question 6. Given

$$
f^{\prime}(x)=\frac{(x-6)(x-1)}{(x+3)}, \quad f^{\prime \prime}(x)=\frac{(x+9)(x-3)}{(x+3)^{3}}, \quad f(-3) \text { not defined. }
$$

determine the intervals on which $f(x)$ increases/decreases, the intervals on which the function is concave up/down and the x values in which the function has maximum, minimum and inflection.

$$
f^{\prime}(x)=0 \text { when } x=1,6
$$

$f^{\prime}(x)$ is undefined at $x=-3$

Local min at 6 loud max at 1
-3 is not in the domain

$$
f^{\prime \prime}(x)=0 \text { when } x=3,-9
$$

$f^{\prime \prime}(x)$ is undefined at -3

inflection points at

$$
x=-9,3
$$

-3 is not in the domain thus it is not an inflection point
Question 7. Determine A and B so that the curve $y=A x^{1 / 9}+B x^{-1 / 9}$ has an inflection point at $(1,2)$.
$p \operatorname{lng}(1,2)$ in to the equation

$$
\begin{align*}
z & =A 1^{1 / 9}+B 1^{-1 / 9} \\
\Leftrightarrow z & =A+B \tag{1}
\end{align*}
$$

The curve has an inflection point at $(1,2)$, so

$$
\begin{aligned}
& y^{\prime \prime}(1)=0 \text { or undet年ed } \\
& y^{\prime}(x)=\frac{1}{9} A x^{-8 / 9}-\frac{1}{9} B x^{-10 / 9} \\
& y^{\prime \prime}(x)=\frac{1}{9} \cdot\left(-\frac{8}{9}\right) A x^{-17 / 9}+\frac{1}{9} \cdot \frac{10}{9} \cdot B x^{-19 / 9}
\end{aligned}
$$

this expression tells us $y^{\prime \prime}(x)$ is only undefined at $x=0, y^{\prime \prime} \prime$ I) is defined

$$
\text { so } y^{\prime \prime}(1)=0 \Rightarrow-\frac{8}{\delta 1} A \cdot 1^{-17 / 9}+\frac{10}{\delta 1} B \cdot 1^{-19 / 9} \Rightarrow 0 \Leftrightarrow 4 A=5 B(2)
$$

