3.3 Problems Part 1

Derivatives and Graphs

Example 1. If you are given a formula for a function f(x), how do you determine where f is increasing or decreasing?

Example 2. State the first derivative test (without looking in your notes)

Example 3. For the following functions, find the intervals on which it is increasing and decreasing, and find where any local maximum and/or minimum values occur.

(a)
$$f(x) = 4x^3 + 3x^2 - 6x + 1$$

$$f'(X) = 12X^2 + 6X - 6$$

$$= -6(2x^2 + X - 1)$$

$$= 6(2x - 1)(X + 1)$$

$$X = \frac{1}{2}, -1 \quad \text{are the critical points}$$

$$\text{bod max} \quad \text{bod min} \quad \text{bod max at } X = -1$$

$$+ - - + \quad \text{bod max at } X = \frac{1}{2}$$

(b) $f(x) = \sin x + \cos x$ on the domain $[0, 2\pi]$ (the one we did in class was $(\pm x) = \sin x - \cos x$)

$$f'(x) = bos x - sin x = 0$$

$$f'(x) = bos x - sin x = 1$$

$$f'(x) = tan x = 1$$

$$f'(x) = tan x = 1$$

$$f'(x) = x = \frac{1}{4} + k\pi f \text{ for any integer } k$$

$$Gmong \text{ these }, \quad \frac{1}{4}, \quad \frac{51}{4} \text{ are in } [0, 24]$$

$$f'(x) = \frac{1}{4} + \frac{1}{4$$

(c)
$$f(x) = x^{2/3}(6-x)^{1/3}$$

 $f'_{1}(X) = \frac{2}{5}x^{-\frac{1}{3}}(6-x)^{1/3} - \frac{1}{5}x^{2/3}(6-x)^{2/3}$
 $f'_{1}(X) = 0$ when $\frac{2}{-5}x^{-\frac{1}{3}}(6-x)^{1/3} - \frac{1}{5}x^{2/3}(6-x)^{-2/3} = 0$
 $\frac{2}{5}x^{-\frac{1}{3}}(6-x)^{1/3} = \frac{1}{5}x^{2/3}(6-x)^{-2/3}$
 $m \ln \ln \ln y$ bo the sides by $x^{1/3}(6-x)^{-2/3}$ we get rid of the denominators
 $-\frac{2}{5}(6-x) = \frac{1}{5}x \iff x = 4$
 $-\frac{1}{5} + \frac{1}{5} + \frac{1}{5$

$$f'(x) = 12x^{2} + 6x - 6$$

$$f''(x) = 24x + 6$$

$$f''(x) > 0 \quad \text{when } x > -\frac{1}{4} : \text{woncave upward}$$

$$f''(x) < 0 \quad \text{when } x < -\frac{1}{2} : \text{woncave downward}$$

$$inflection \quad point : x = \frac{1}{4}$$

MSU

MTH132 - Examples

(b) Use your results from 3(a) and 4(a), along with the facts that

