3.2 Problems

A Couple of Graph Problems

Example 1. Consider the graphs below. Estimate the value(s) c that satisfy the conclusion of the Mean Value Theorem on the given interval.

On the interval [-1, 4].

I IN ST.

 $f(x) = x^{2} - 3x + 2$

Bread and Butter Problems Example 2. Consider the function $f(x) = \sqrt[3]{x}$ on the interval [0, 1].

(a) Why does f satisfy the hypotheses for the MVT?

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$$

 $f(x)$ is untinuous on [0,1] and is differentiable on (0,1)

(b) Find all c values that satisfies the conclusion of the MVT.

$$f'(L) = \frac{f(h) - f(h)}{h - h} = \frac{f(h) - f(h)}{h - h} = \frac{3f(h - \frac{3}{2}f_{0})}{1 - h} = 1$$

$$f'(L) =$$

satisfies MUT **Example 3.** Consider the function $f(x) = x^3 - 3x + 2$ on the interval [-2, 2]. (a) Why does f satisfy the hypotheses for the MVT?

(b) Find all c values that satisfies the conclusion of the MVT.

$$\frac{f(b) - f(a)}{b - a} = \frac{f(z) - f(z)}{z - (-z)} = \frac{4 - 0}{4} = \left| \left| \frac{f'(x) - 3x^2 - 3}{2} \right| \right|$$

$$\frac{f'(c) = 1}{(-z)^2 - 3 = 1}$$

$$(c) = 3c^2 = 4$$

$$(c) = 1 = \frac{1}{\sqrt{3}} = 2$$

MSU

Example 4. Let $f(x) = (x-3)^{-2}$. Show that there is no value $c \in (1,4)$ such that f(4) - f(1) = f'(c)(4-1). Why does this not contradict the Mean Value Theorem?

f(4) - f(1) = f(1)(4-1)	$f(x) = (x-3)^{-2}$
$(=) 1 - \frac{1}{4} = f'(c) \cdot 3$	$f'_{(X)} = -2(x-3)$
(a) $\frac{1}{4} = +^{1}(c)$	
$(=)$ $\frac{1}{4} = -2((-3)^{-3})$	
$(=) -\frac{1}{5} = (c-3)^{-3}$	
$(-\frac{1}{5})^{-\frac{1}{5}} = (-\frac{3}{5})^{-\frac{1}{5}} = (-$	
(-2) = (-3)	
(=) 2 - 2 = (
but this c is not in (1.4)	
so there is no CE (1,4) that satisfies the worldsion	
of the MUT. This happens because the assumption of MUT	
-that fix) is continuous on [1,4] is failed here as the given	
$f(x) = x-3 ^{-2}$ is not Lortin use of $x=3$	

A Beautiful Final Exam Problem

Example 5. Show that the equation $3x + 2\cos x + 5 = 0$ has exactly one real root by:

(a) Using the IVT to show that $3x + 2\cos x + 5 = 0$ has at least one root.

Let
$$f(x) = 3x+2405x+5$$

 $f(\pi) = 3\pi-2+5 > 9$
 $f(-\pi) = 3(-\pi)-2+5 < 9$
 $f(x)$ is writinnows everywhere
By IVT, there exist $(f(-\pi,\pi))$ such that $f(c) = 9$

(b) Using the MVT to show that $3x + 2\cos x + 5 = 0$ has at most one root.

prove by contradiction. Suppose there were two roots

$$f(a) = f(b) = 0$$
, Then MUT implies that there is $c \in (a, b)$.
such that
 $f'(c) = \frac{f(b) - f(a)}{b - a} = 0$
However, $f'(c) = 0$ cannot happen because for any x
 $f'(x) = 3 - 2 \sin x > 0$
This contradiction implies that there cannot be two roots.
In other words, there is at most one root.