3.1 Problems

Extreme Values

Example 1. What are the two ways in which a function $f(x)$ can have a critical value?

$$
\begin{gathered}
\text { When } \quad f(x)=0 \text { or } f(x) \text { is undefined } \\
\text { we have a Gitical value. }
\end{gathered}
$$

Example 2. Sketch the graph of a function f that is continuous on $[1,5]$ and has the given properties

- Absolute maximum at 5
- Absolute minimum at 2
- Local maximum at 3
- Local minima at 2 and 4

Example 3. Find the critical numbers of the functions
(a) $g(t)=t^{4}+t^{3}+t^{2}+1$

$$
\begin{aligned}
g^{\prime}(t) & =4 t^{3}+3 t^{2}+2 t \\
& =t\left(4 t^{2}+3 t+2\right)
\end{aligned}
$$

$\uparrow_{\text {this polynomial is always }>0}$
So $g^{\prime}(t)=0$ only when $t=0$
(b) $f(x)=x^{3 / 4}-2 x^{1 / 4} \underset{\rightarrow}{\operatorname{domain}}(x \geq 0)$

$$
f^{\prime}(x)=\frac{3}{4} x^{-\frac{1}{4}}-\frac{2}{4} x^{-3 / 4}
$$

$f^{\prime}(x)$ is nadefined at $x=0$
$f^{\prime}(x)$ is 0 when

$$
\frac{3}{4} x^{-\frac{1}{4}}-\frac{2}{4} x^{-3 / 4}
$$

critical points

$$
\Rightarrow \quad \frac{3}{4} x^{-\frac{1}{4}}=\frac{2}{4} x^{-3 / 4}
$$

$$
\text { are } 0, \frac{4}{9}
$$

multiply both $\rightarrow x^{3 / 4} \cdot \frac{3}{4} x^{-\frac{1}{4}}=\frac{2}{4} x^{-3 / 4} \cdot x^{3 / 4}=$
sides by $=$

$$
\Rightarrow \frac{3}{4} \cdot x^{1 / 2}=\frac{1}{2} \quad \Rightarrow x=\frac{4}{9}
$$

Example 4. Find the absolute maximum and absolute minimum values of f on the given interval
(a) $f(x)=2 x^{3}-3 x^{2}-12 x+1$ on $[-2,3]$
step 1: find the critical points

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-6 x-12 \\
& =6\left(x^{2}-x-2\right) \\
& =6(x-2)(x+1) \\
x & =2,-1 \text { use witical points }
\end{aligned}
$$

Step 2: Evaluate $f(2), f(-1), f(-2) \quad f(3)$
absolute min max boundary points

$$
f(2)=-19 \quad f(-1)=8 \quad f(-2)=-3 \quad f(3)=1 .
$$

(b) $f(x)=x+\frac{1}{x}$ on $[-1,1] \quad(X \neq 0)$
step 1: find the critical points

$$
f^{\prime}(x)=1-x^{-2}
$$

$f^{\prime}(x)$ is undefined at 0
$f^{\prime}(x)$ is 0 when $1-x^{-2}=0$

$$
\begin{aligned}
& \Leftrightarrow \quad x^{2}=1 \\
& \Leftrightarrow \quad x= \pm 1
\end{aligned}
$$

Step 2. evaluate

$$
\begin{aligned}
& f(0) \cdot f(1) \cdot f(-1) \\
& f(1)=2, f(-1)=-2, f(0)= \pm \infty
\end{aligned}
$$

So the absolute max/min do not exist
(c) $f(x)=x+\frac{1}{x}$ on $[0.2,4]$

The critical points of f found in (b) are $0, \pm 1$, only 1 lies in the current interval $[0.2,4]$, so 1 is the critical point here

Evaluate $f(1), f(0,2), f(4)$
boundary points

$$
\begin{aligned}
& f(1)=\underset{\min }{2} f(0,2)=\frac{1}{5}+5=\frac{5,2}{\max } f(4)=4+\frac{1}{4}=4,25 \\
& \left.=\sin x \text { on } \frac{-2 \pi}{2}, \frac{\pi}{6}\right]
\end{aligned}
$$

(d) $f(x)=\sin x$ on $\left[\frac{-2 \pi}{3}, \frac{\pi}{6}\right]$

$$
f^{\prime}(x)=\cos x
$$

$f^{\prime}(x)$ is never undefined
$f^{\prime}(x)=0$ when $x=\frac{\pi}{2}+k \pi$ for all integers k
among these only $-\frac{\pi}{2}$ lies in the interval $\left[\frac{-2 \pi}{3}, \frac{\pi}{6}\right]$
Evaluate $\left.f\left(-\frac{\pi}{2}\right)=-\frac{1}{m i n} f\left(\frac{-2 \pi}{3}\right)=-\frac{\sqrt{3}}{2}, f+\frac{\pi}{6}\right)=\frac{1}{2}$
(e) $f(x)=x \sqrt{4-x^{2}}$ on $[-1,2]$

Gitical points

$$
f^{\prime}(x)=\sqrt{4-x^{2}}+x \cdot \frac{1}{2} \frac{-2 x}{\sqrt{4-x^{2}}}=\sqrt{4-x^{2}}-\frac{x^{2}}{\sqrt{4-x^{2}}}
$$

$f^{\prime}(x)$ is undefined when $4-x^{2}=0 \Leftrightarrow x= \pm 2$

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { when } \sqrt{4-x^{2}}-\frac{x^{2}}{\sqrt{4-x^{2}}}=0 \\
& \Leftrightarrow \sqrt{4-x^{2}}=\frac{x^{2}}{\sqrt{4-x^{2}}} \\
& \Leftrightarrow 4-x^{2}={ }_{4} x^{2} \Leftrightarrow x^{2} \Rightarrow \Leftrightarrow(-1)=-\sqrt{3} \leftarrow \min \\
& f(2)=0 \\
& f(\sqrt{2})=2 \leftarrow \max
\end{aligned}
$$

