2.9 Problems

Theorem 1. $\frac{d}{d x}\left[\sin \left(x^{\circ}\right)\right] \neq \cos \left(x^{\circ}\right)$
Proof.

$$
\frac{d}{d x}\left(\sin x^{0}\right)=\frac{d}{d x} \sin \left(\frac{\pi}{180} x\right)=\frac{\pi_{1}}{180} \cos \left(\frac{\pi_{1}}{180} x\right)=\frac{\pi_{1}}{180} \cos \left(x^{0}\right) \neq \cos \left(x^{\circ}\right)
$$

Example 2. Use linear approximation and differentials to approximate $\sin \left(33^{\circ}\right)$ by following the steps below.
(a) Find the linearization of $\sin x$ at the appropriate $x=a$.

$$
a=30^{\circ}=\frac{\pi}{6} \quad f(x)=\sin x \quad x_{0}=\frac{\pi}{180} \cdot 33
$$

$$
\text { The linearization } \begin{aligned}
L(x)= & f|a|+f^{\prime}(a)(x-a) \\
= & \sin \frac{\pi}{6}+\cos \frac{\pi}{6}\left(x-\frac{\pi}{6}\right) \\
= & \frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)
\end{aligned}
$$

(b) Use the linearization to approximate $\sin \left(33^{\circ}\right)$.

$$
\begin{aligned}
\begin{aligned}
\sin 33^{\circ}=\sin \left(\frac{33 \pi}{180}\right) & \approx L\left(x_{0}\right)
\end{aligned} & =\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x_{0}-\frac{\pi}{6}\right) \\
x_{0} & =\frac{1}{2}+\frac{\sqrt{3}}{2}\left(\frac{33 \pi}{180}-\frac{\pi}{6}\right) \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \frac{3 \pi}{180} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{120} \pi
\end{aligned}
$$

(c) Find the differential of $y=\sin x$.

$$
\begin{aligned}
d y & =y^{\prime} d x \\
& =\cos x d x
\end{aligned}
$$

(d) Use the appropriate $d x$ to evaluate the differential for $d y$. What does this give you? Why is it different from your answer in (b)?

$$
\begin{aligned}
x \text { changes from } \frac{\pi}{6} \text { to } \frac{33 \pi}{180} \text {, so } d x=\frac{33 \pi}{180}-\frac{\pi}{6}=\frac{3 \pi}{180} \\
\text { by (C) } \quad \begin{aligned}
& d y=\cos \frac{\pi}{6} \cdot d x \leftarrow \\
&=\frac{\sqrt{3}}{2} \cdot \frac{3 \pi}{180} \\
&=\frac{\sqrt{3} \pi}{120} \leftarrow \text { It is just the second term in } \\
& \text { the answer to (b) }
\end{aligned}
\end{aligned}
$$

