2.8 Problems

Level 1 Problems
Example 1. The length of a rectangle is increasing at a rate of $4 \mathrm{~cm} / \mathrm{s}$ and its width is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. When the length is 5 cm and the width is 6 cm :
(a) how fast is the area of the rectangle increasing?

$e^{\prime}=4$
(1) $A=e d$
(2) $A^{\prime}=e^{\prime} d+l d^{\prime}$

$$
\begin{aligned}
& d^{\prime}=3 \\
& e\left(t_{0}\right)=5 \\
& d\left(t_{0}\right)=6
\end{aligned}
$$

(3)

$$
\begin{aligned}
& A^{\prime}\left(t_{0}\right)=l^{\prime}\left(t_{0}\right) d\left(t_{0}\right)+l\left(t_{0}\right) d^{\prime}\left(t_{0}\right) \\
& A^{\prime}\left(t_{0}\right)=4 \cdot 6+5.3=39 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

(b) how fast is the perimeter of the rectangle increasing?

$$
\begin{aligned}
& \square d \\
& \text { d } \stackrel{11}{p}_{p=2 l+2 d} \\
& e^{\prime}=4 \quad P^{\prime}\left(0_{0}\right) ? \\
& p^{\prime}=2 e^{\prime}+2 d^{\prime} \\
& d^{\prime}=3 \\
& \ell\left(t_{0}\right)=5 \\
& P^{\prime}\left(t_{0}\right)=2 l^{\prime}\left(t_{0}\right)+2 d^{\prime}\left(t_{0}\right) \\
& d\left(t_{0}\right)=6 \\
& =2 \cdot 4+2.3=14 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

(c) how fast is the diagonal of the rectangle increasing?

$$
\begin{aligned}
& \frac{1}{s^{\prime}\left(t_{0}\right) ?} d \\
& e^{\prime}=4 \\
& d^{\prime}=3 \\
& \left(H_{0}\right)=5 \\
& d\left(H_{0}\right)=6
\end{aligned}
$$

11) $s^{2}=d^{2}+l^{2}$
(2) $45 s^{\prime}=4 d d^{\prime}+\Delta l l^{\prime}$
12)

$$
\begin{aligned}
& s\left(t_{0}\right) s^{\prime}\left(t_{0}\right)=d\left(t_{0}\right) d^{\prime}\left(t_{0}\right)+l\left(t_{0}\right) e^{\prime}\left(t_{0}\right) \\
& s\left(t_{0}\right) s^{\prime}\left(t_{0}\right)=6.3+5.4
\end{aligned}
$$

$$
1 \Rightarrow S^{\prime}\left(t_{0}\right)=\frac{38}{\sqrt{61}}(\mathrm{~m} / \mathrm{s}
$$

Example 2. If $x^{2}+y^{2}+z^{2}=9, d x / d t=5$, and $d y / d t=4$ find $d z / d t$ when $(x, y, z)=(2,2,1)$.
11) $x^{2}+y^{2}+z^{2}=9$

$$
\frac{d}{d t} V \quad \frac{d}{d t} \downarrow
$$

12) $2 x x^{\prime}+2 y y^{\prime}+2 z z^{\prime}=0$
(3) at $t=$ to $_{0}$

$$
\begin{aligned}
& 2 x\left(t_{0}\right) x^{\prime}\left(t_{0}\right)+2 y\left(t_{0}\right) y^{\prime}\left(t_{0}\right)+2 z\left(t_{0}\right) z^{\prime}\left(t_{0}\right)=0 \\
& 2 \cdot 2+8 \cdot 2 \cdot 4+8 \cdot 1 z^{\prime}\left(t_{0}\right)=0 \\
& \Rightarrow z^{\prime}\left(t_{0}\right)=-18
\end{aligned}
$$

Level 2 Problems
Example 3. A plane flying horizontally at an altitude of 1 mi and a speed of $300 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.

Example 4. A particle is moving along a hyperbola $x y=8$. As it reaches the point $(4,2)$, the y-coordinate is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate of the point changing at that instant?

$$
\begin{aligned}
& x y=8 \\
& \left(x\left(f_{0}\right), y\left(t_{0}\right)\right)=(4,2) \\
& y^{\prime}\left(t_{0}\right)=-3
\end{aligned}
$$

(1) $x y=8$
(2) $x^{\prime} y+y^{\prime} x=0$
(3) $x^{\prime}\left(t_{0}\right) y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right) x\left(t_{0}\right)=0$

$$
\begin{aligned}
& x^{\prime}(t 0) \cdot 2+-3 \cdot 4=0 \\
& \Rightarrow x^{\prime}(0)=6 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Example 5. Two cars start moving from the same point. One travels south at $20 \mathrm{mi} / \mathrm{h}$ and the other travels west at $30 \mathrm{mi} / \mathrm{h}$. At what rate is the distance between the cars increasing two hours later?

(1) $x^{2}+y^{2}=d^{2}$
(2) $\$ x x^{\prime}+4 y y^{\prime}=\& d d^{\prime}$
(3) $x\left(t_{0}\right) x^{\prime}\left(t_{0}\right)+y\left(t_{0}\right) y^{\prime}\left(t_{0},=d\left(t_{0}\right) d^{\prime}\left(t_{0}\right)\right.$

Since the cars are travelling at constant speed the distance they travelled is timex speed so
$\left.\begin{array}{l}x\left(t_{0}\right)=\underbrace{x^{\prime}(t)}_{\text {speed }} \cdot(\underbrace{t o-0}_{\text {time }})=20 \cdot 2=40 \\ \text { wise } y\left(t_{0}\right)=y^{\prime}(t)\left(t_{0}-0\right)=30 \cdot 2=60\end{array}\right\}$ plug into 11$)$:

Level 3 Problem
Example 6. A trough is 8 ft long and has a cross section of an isosceles trapezoid with base of 1 ft , height of 1 ft , and top of 2 ft (see the picture below). If the trough is being filled with water at the rate of $3 \mathrm{ft}^{3} / \mathrm{min}$. how fast is the water level rising when the water is 6 inches deep?

$$
V^{\prime}(t)=3 f t \quad h^{\prime}(t 0)=? \quad h\left(t_{0}\right)=6 \mathrm{in}=0,5 \mathrm{ft}
$$

, Volume of water at t
(1) $V(t)=$ cross-section area x height

$$
\left.=\frac{1}{2}(1+a \mid t)\right) \cdot h(t) \quad x \quad 8
$$

$1 /$ height
height of water at time t
the two base lengths of the cross-section trapezoid at time t
(2) differentiate (1):

$$
\begin{aligned}
& v^{\prime}(t)=4 a^{\prime}(t) \cdot h(t)+4(1+a(t)) h^{\prime}(t) \\
& \text { At } t=\text { to }^{\prime}
\end{aligned}
$$

(3) At $t=$ to: 2

$$
v^{\prime}\left(t_{0}\right)=4 a^{\prime}\left(t_{0}\right) h\left(t_{0}\right)+4\left(1+a\left(t_{0}\right)\right) h^{\prime}\left(t_{0}\right)
$$

We need to get a H_{0}) and $a^{\prime}\left(t_{0}\right)$ first. To that end, we need to relate att) with $h(t)$ using similar triangle. Look at the graph (\rightarrow),
 $\triangle A F G$ and $\triangle A B E$ are similar, so

$$
\left.\begin{array}{ll}
\frac{F G}{B E}=\frac{A G}{A E} \quad \begin{array}{l}
a=1+h \\
\Leftrightarrow
\end{array} \quad \begin{array}{l}
\frac{a-1}{2} \\
a^{\prime}=h^{\prime}
\end{array} \\
\Leftrightarrow \quad \text { so } a\left(t_{0}\right)=1+h\left(t_{0}\right)=1.5 f t
\end{array}\right\}^{\frac{1}{2}}=\frac{h}{1} \quad
$$

