2.7 Problems

Graphs

Example 1. Graphs of the velocity functions of two particles are shown, where t is measured in seconds. When is each particle speeding up? When is it slowing down? Explain.

(b)

$$
\begin{aligned}
& V(t) \xrightarrow[1]{2} \\
& \text { speeding up: } \\
& (0,1) \cup(2,3) \\
& \text { up: }(1,2) \cup(3,4) \\
& (0,1) \cup(2,3)
\end{aligned}
$$

Example 2. Graphs of the position functions of two particles are shown, where t is measured in seconds. When is each particle speeding up? When is it slowing down? Explain.
(a)

(b)

$\operatorname{up}(1,2) \cup(3,4)$
down: $(0,1) \cup(2,3)$

$$
\begin{aligned}
& \frac{1,-1, t}{1,1}+\frac{1}{1} \\
& 012
\end{aligned} a(t)
$$

Standard Problems
Example 3. A particle moves according to the position function $s(t)=\frac{t}{\left(1+t^{2}\right)}$ on the interval $t \geq 0$, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.

$$
\begin{aligned}
& v(t)=s^{\prime}(t)=\frac{1 \cdot\left(1+t^{2}\right)-t \cdot 2 t}{\left(1+t^{2}\right)^{2}} \\
& \text { hen is the particle at rest. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { at rest means v(t)=0 } \\
& \qquad\left(\Rightarrow \frac{1+t^{2}-t \cdot 2 t}{\left(1+t^{2}\right)^{2}}=0 \Rightarrow 1+t^{2}-t \cdot 2 t=0\right. \\
& \text { (c) When is the particle moving in the positive direction? } \quad \Rightarrow t^{2}=1 \Rightarrow t=1,(-1)
\end{aligned}
$$

moving to positive direction means $v^{\prime}(t)>0$

$$
\left.\begin{array}{rl}
& \frac{1+t^{2}-t \cdot 2 t}{\left(1+t^{2}\right)^{2}}>0 \quad \text { solve inequality } \\
\Leftrightarrow & 1-t^{2}>0 \\
\Leftrightarrow & \left(1-t^{2}=0 \Rightarrow t= \pm 1\right. \\
-\frac{1,-1}{-1} & 1
\end{array}\right)
$$ from (b) we know it happens at $t=1$

So Total distance

$$
\begin{aligned}
& =|S(1)-S(0)|+|S(8)-S(1)| \\
& =\left|\frac{1}{2}-0\right|+\left|\frac{8}{1+8^{2}}-\frac{1}{2}\right|=\frac{1}{2}+\frac{1}{2}-\frac{8}{65}=1-\frac{8}{65} \text { feet }
\end{aligned}
$$

(Example 3 continued) Recall $s(t)=\frac{t}{\left(1+t^{2}\right)}$ on the interval $t \geq 0$.
(e) Calculate the acceleration of the particle at time t.

$$
\begin{aligned}
\text { recall } \quad v(t) & =\frac{1-t^{2}}{\left(1+t^{2}\right)^{2}} \\
a(t)=v^{\prime}(t) & =\frac{-2 t\left(1+t^{2}\right)^{2}-\left(1-t^{2}\right) \cdot 2\left(1+t^{2}\right) \cdot 2 t}{\left(1+t^{2}\right)^{4}} \\
& =\frac{-2 t\left(1+t^{2}\right)-4 t\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{3}} \\
& =\frac{-2 t-2 t^{3}-4 t+4 t^{3}}{\left(1+t^{2}\right)^{3}}=\frac{-6 t+2 t^{3}}{\left(1+t^{2}\right)^{3}}
\end{aligned}
$$

(f) When is the particle speeding up?

$$
\begin{aligned}
& \text { speedingup means } v(t)>0 \& \quad a(t)>0 \text { or } \\
& \\
& v(t)<0 \quad \& \quad a(t)<0
\end{aligned}
$$

From (c), we know $u(t)>0$ on $[0,1)$, su

We need to find when $a(t)>0$. From (e), this means

$$
\begin{aligned}
& \frac{-6 t+2 t^{3}}{\left(1+t^{2}\right)^{3}}>0 \Leftrightarrow-6 t+2 t^{3}>0<\begin{array}{l}
\text { Solve this } \\
-6 t+2 t^{3}=0 \Rightarrow t=0, \pm \sqrt{3}
\end{array} \\
& \text { so a (t) } \\
& 3 \text { recall } t \geq 0
\end{aligned}
$$

Example 4. A ball is thrown vertically upward on planet X with an initial velocity of 10 meters per second. Its height after t seconds is given by $h(t)=-a t^{2}+10 t+1$
(a) Find the value of a if the ball reaches its maximum height after 5 seconds
it reaches maximum height at $h^{\prime}(t)=0$
\Rightarrow it reaches maximum height after 5 sewnds means

$$
\begin{aligned}
& h^{\prime}(5)=0 \\
\Leftrightarrow & \left.(-2 a t+10)\right|_{t=5}=0 \\
\Leftrightarrow & -10 a+10=0 \Rightarrow a=1 \Rightarrow h(t)=-t^{2}+10 t+1
\end{aligned}
$$

(b) What is the balls maximum height?
by (a), maximum height is the height at $t=5$, so it is

$$
\begin{aligned}
h(5) & =-5^{2}+10 \cdot 5+1 \\
& =-25+50+1 \\
& =26
\end{aligned}
$$

(c) When will the ball hit the ground?
hit the ground means $h(t)=0$, solve for t

$$
\begin{aligned}
& \Leftrightarrow \quad-t^{2}+10 t+1=0 \\
& \quad t=\frac{10 \pm \sqrt{10^{2}+4}}{2}=5 \pm \sqrt{26}
\end{aligned}
$$

Since $t \geq 0$, it can only be $5+\sqrt{26}$
(d) How fast is the ball traveling when it is 2 meters above the ground on the way down?

$$
V(t)=h^{\prime}(t)=-2 a t+10
$$

when $h(t)=2 \Leftrightarrow-t^{2}+10 t+1=2$

$$
\begin{aligned}
& \Leftrightarrow \quad t^{2}-10 t+1=0 \\
& \Leftrightarrow \quad t=\frac{10 \pm \sqrt{100-4}}{2}=5 \pm \sqrt{24}
\end{aligned}
$$

$t=5-\sqrt{24}$ is on the way up (due to (a))

$$
t=5+\sqrt{24} \text { is on the ways down, at this time }
$$

$$
\begin{aligned}
V(t) & =-2(5+\sqrt{24})+10 \\
& =-2 \sqrt{24}
\end{aligned}
$$

