2.6 Problems

Implicit differentiation
Example 1. Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $\frac{1}{x}+\frac{1}{y}=1$ differentiate both hand sides w.r.t. $x$

$$
-x^{-2}+-y^{-2} \cdot \frac{d y}{d x}=0
$$

with respect tu
solve for $\frac{d y}{d x} \|$

$$
\frac{d y}{d x}=-y^{2} x^{-2}
$$

(b) $4 \cos x \sin y=1$ differentiate both hand sides (take implicit diff)

$$
\begin{gathered}
x(-\sin x) \cdot \sin y+x \cos x \cos y \cdot \frac{d y}{d x}=0 \\
\sqrt{l} \text { solve for } \frac{d y}{d x} \\
\frac{d y}{d x}=\tan x \cdot \tan y
\end{gathered}
$$

Example 2. Consider the curve $y^{2}=x^{3}+3 x^{2}$
(1)
(a) Find an equation for the tangent line to this curve at the point $(1,-2)$

Implicit diff: $2 y \frac{d y}{d x}=3 x^{2}+6 x$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{3 x^{2}+6 x}{2 y} \tag{2}
\end{equation*}
$$

at $(1,-2)$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3+6}{2(-2)}=-\frac{9}{4} \\
& y-(-2)=-\frac{9}{4}(x-1)
\end{aligned}
$$

(b) At what points does this curve have horizontal tangents?
horizontal tangent means

$$
\frac{d y}{d x}=0
$$

From (z) above this means

$$
\begin{equation*}
\frac{3 x^{2}+6 x}{2 y}=0 \tag{3}
\end{equation*}
$$

From 11), we know $y= \pm \sqrt{x^{3}+3 x^{2}}$, plug this int 13)

$$
\frac{3 x^{2}+6 x}{ \pm 2 \sqrt{x^{3}+3 x^{2}}}=0
$$

simplify: $\frac{3 x+6}{ \pm 2 \sqrt{x+3}}=0 \Leftrightarrow 3 x+6=0 \Leftrightarrow x=-2$

Example 3. Use implicit differentiation to find the equation of the tangent line to the curve at the given point.
(a) $\sin (x+y)=2 x-2 y$ at the point $(\pi, \pi)$.

Imphit dit: $\cos (x+y)\left(1+\frac{d y}{d x}\right)=2-2 \frac{d y}{d x}$

$$
\operatorname{at}(\pi, \pi): \cos ^{\prime \prime \prime}(2 \pi)\left(1+\left(\frac{d y}{d x}\right)\right)=2-2\left(\frac{d y}{d x}\right)
$$

$\sqrt{1}$ solve

$$
3 \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{3}
$$

tangent line $\quad y-\pi=\frac{1}{3}(x-\pi)$
(b) $x^{2}+x y+y^{2}=3$ at the point where $x=1$ (Hint: there are two equations)
$x^{2}+x y+y^{3}=3 \xrightarrow{x=1} 1+y+y^{2}=3 \Rightarrow y=-2,1$ so when $x=1$, there're 2 pts $(1,1) \&(1,-2)$
Implicit dit:

$$
\begin{gather*}
2 x+\underset{\psi}{y}+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \tag{1}
\end{gather*}
$$

$$
\begin{aligned}
& \text { at }(1,1) 2+1+\frac{d y}{d x}+2 \frac{d y}{d x}=0 \stackrel{\text { solve }}{\Rightarrow} \frac{d y}{d x}=-1 \\
& \text { at }(1,-2): 2-2+\frac{d y}{d x}-4 \frac{d y}{d x}=0 \stackrel{\text { solve }}{\Rightarrow} \frac{d y}{d x}=0
\end{aligned}
$$

Tangent lines $\quad y-1=(-1) \mid x-1)$

$$
y+2=0(x-1)
$$

Example 4. Find $y^{\prime \prime}$ if $x^{4}+y^{4}=16$
Implicit ditf: $4 x^{3}+4 y^{3} \frac{d y}{d x}=0 \stackrel{\text { solve }}{\longrightarrow} \frac{d y}{d x}=-\frac{x^{3}}{y^{3}}$
ditt aguin: $12 x^{2}+12 y^{2} \cdot\left(\frac{d y}{d x}\right)^{2}+4 y^{3} \frac{d^{2} y}{\frac{d x^{2}}{2}}=0$
Solve for $y^{\prime \prime}: \quad y^{\prime \prime}=\frac{-3 y^{2}\left(\frac{d y}{d x}\right)^{2}-3 x^{2}}{\sqrt{y^{3}}}$

$$
=\frac{-3 y^{2}\left(-\frac{x}{y}\right)^{6}-3 x^{2}}{y^{3}}
$$

$$
=\frac{-3 x^{6} y^{-4}-3 x^{2}}{y^{3}}
$$

