2.5b Problems

Tables and Graphs
Example 1. A table of values for f, g, f^{\prime}, and g^{\prime} are given.
(a) Find the derivative of $f(g(x))$ at $x=1$.
(b) Find the derivative of $g(f(x))$ at $x=1$.
(c) Find the derivative of $f(f(x))$ at $x=2$.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	2	3	3	0
2	1	-3	-5	6
3	4	-1	11	1

(a) $f^{\prime}(g(1)) \cdot g^{\prime}(1)=f^{\prime}(3) g^{\prime}(1)=11 \cdot 0=0$
(b) $g^{\prime}(f(1)) f^{\prime}(1)=g^{\prime}(2) f^{\prime}(1)=6 \cdot 3=18$
(c) $f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(1) f(2)=3 \cdot(-5)=-15$

Example 2. If f is the function whose graph is given to the right. Use the graph of f to estimate the value of each derivative:

1. $f(f(x))$ at $x=2$.
2. $f\left(x^{2}\right)$ at $x=2$.

$$
\begin{aligned}
& \left.\left(x^{2}\right) a x=2\right) \\
& (f f(x))^{\prime} \mid=f^{\prime}\left(\left.f(x) f^{\prime}(x)\right|_{2}=f^{\prime}\left(t(2)+f^{\prime}(2)\right.\right. \\
& f(1)=1, f^{\prime}(2)=-1, f^{\prime}(1)=-1 \text { due to the graph }
\end{aligned}
$$

$$
\text { So } f^{\prime}(f(z)) f^{\prime}(z)=f^{\prime}(1) \cdot f^{\prime}(z)=1
$$

Standard Problems
Example 3. Find the derivatives of the following functions:
(a) $f(x)=\frac{3}{x} \cos ^{-4} x$

$$
\begin{aligned}
& f^{\prime}(x)=\left(\frac{3}{x}\right)^{\prime} \cos ^{-4} x+\frac{3}{x}\left(\cos ^{-4} x\right)^{\prime} \text { product rale } \\
&=-3 x^{-2} \cos ^{-4} x+\frac{3}{x}(-4) \cos ^{-5} x \cdot(-\sin x) \\
& \text { chain rule }
\end{aligned}
$$

(b) $g(x)=\left(\left(4 x+x^{3}\right)^{-2}+3 x\right)^{4} \leftarrow$ outer

$$
g_{(x)}^{\prime}=4\left(\left(4 x+x^{2}\right)^{-2}+3 x\right)^{3} \cdot\left(-2\left(4 x+x^{3}\right)^{-3} \cdot\left(4+3 x^{2}\right)+3\right)
$$

(c) $h(t)=\sin (\cos (\tan (2 t)))$

$$
\begin{aligned}
h^{\prime}(t) & =\sin ^{\prime}(\cos (\tan (2 t))) \cdot \cos ^{\prime}(\tan (2 t)) \cdot \tan ^{\prime}(2 t) \cdot(2 t)^{\prime} \\
& =\cos (\cos (\tan (2 t))) \cdot(-\sin (\tan (2 t))) \cdot \sec ^{2}(2 t) \cdot 2
\end{aligned}
$$

Example 4. Find an equations of the tangent line to the curve at the given point:
(a) $f(x)=(1+2 x)^{10}$ at $x=0$.

$$
\begin{aligned}
f^{\prime}(x) & =10(1+2 x)^{9} \cdot 2 \\
f^{\prime}(0) & =20 \\
f(0) & =1 \\
y-f(0) & =f^{\prime}(0)(x-0) \\
\Leftrightarrow y-1 & =20 x
\end{aligned}
$$

(b) $g(x)=\sqrt{1+x^{3}}$ at $x=2$

$$
\begin{aligned}
& g^{\prime}(x)=\frac{1}{2}\left(1+x^{3}\right)^{-\frac{1}{2}} \cdot 3 x^{2} \\
& g^{\prime}(2)=\frac{1}{2} \frac{1}{3} \cdot 3 \cdot 4=2 \\
& g(2)=\sqrt{1+8}=3 \\
& y-g(2)=g^{\prime}(2)(x-2) \\
& y-3=2(x-2)
\end{aligned}
$$

(c) $h(x)=\sin x+\sin ^{2} x$ at $(0,0)$

$$
\begin{aligned}
& h^{\prime}(x)=\cos x+2 \sin x \cos x \\
& h^{\prime}(0)=1+0=1 \\
& y-0=1(x-0) \Leftrightarrow y=x
\end{aligned}
$$

Non-Standard (Fun) Problems
Example 5. If $h(x)=\sqrt{4+3 f(x)}$ where $f(1)=7$ and $f^{\prime}(1)=4$, find $h^{\prime}(1)$.

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{2}(4+3 f(x))^{-\frac{1}{2}} \cdot f^{\prime}(x) \\
\Rightarrow h^{\prime}(1) & =\frac{1}{2}(4+3 f(1))^{-\frac{1}{2}} \cdot f^{\prime}(1) \\
& =\frac{1}{2}(4+3 \cdot 7)^{-\frac{1}{2}} \cdot 4 \\
& =\frac{1}{2} \cdot \frac{1}{5} \cdot 4=\frac{2}{5}
\end{aligned}
$$

Example 6. Write $|x|=\sqrt{x^{2}}$ and use the chain rule to prove that $\frac{d}{d x}|x|=\frac{x}{|x|}$

$$
\begin{aligned}
\frac{d \sqrt{x^{2}}}{d x} & =\frac{1}{2}\left(x^{2}\right)^{-\frac{1}{2}} \cdot \& x \\
& =\frac{x}{\sqrt{x^{2}}}=\frac{x}{|x|}
\end{aligned}
$$

Example 7. If $f(x)=|\sin x|$, find $f^{\prime}(x)$. Where is f not differentiable?
f is not diff when the input of 1.1 is 0 , in this case, it means $\sin x=0 \Leftrightarrow x=k \pi$, for all $k \in \mathbb{Z}$

