2.3 Problems

Graphs and Tables

Example 1. Suppose that

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	-3	-2	4	7

Find $h^{\prime}(2)$ if:
(a) $h(x)=5 f(x)-4 g(x)=-38$
(b) $h(x)=f(x) g(x)=-29$
(c) $h(x)=\frac{f(x)}{g(x)}=\frac{13}{16}$
(d) $h(x)=\frac{g(x)}{1+f(x)}=-\frac{3}{2}$

Example 2. If f and g are the functions whose graphs are shown below, let $u(x)=f(x) g(x)$ and $v(x)=\frac{f(x)}{g(x)}$.

(a) Find $u^{\prime}(1) \quad u^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=2 \cdot 1+1 \cdot(-2)=0$
(b) Find $v^{\prime}(5) \quad v^{\prime}(5)=\frac{f^{\prime}(5) g(5)-f(5) g^{\prime}(5)}{g^{2}(5)}=\frac{-\frac{1}{3} \cdot 2-3 \cdot \frac{2}{3}}{2^{2}}=-\frac{2}{3}$

Standard Problems

Example 3. Differentiate the functions:
(a) $f(x)=\pi^{2}$

Since $f(x)$ is a constant, we have $f^{\prime}(x)=0$
(b) $g(x)=(x-2)(2 x+3)$

Using the product rule $g^{\prime}(x)=(x-2)^{\prime}(2 x+3)+(x-2)(2 x+3)^{\prime}=2 x+3+2(x-2)=4 x-1$
(c) $h(x)=\frac{\sqrt{x}+x}{x^{2}}$

First simplify $h(x): h(x)=\frac{\sqrt{x}}{x^{2}}+\frac{x}{x^{2}}=x^{-3 / 2}+x^{-1}$.
Then take the derivative using the fact that $\left(x^{n}\right)^{\prime}=n x^{n-1}, h^{\prime}(x)=\left(x^{-3 / 2}\right)^{\prime}+\left(x^{-1}\right)^{\prime}=-\frac{3}{2} x^{-5 / 2}-x^{-2}$
(d) $k(x)=\frac{x}{x+\frac{c}{x}}$

First simplify $k(x): k(x)=\frac{x}{\frac{x^{2}+c}{x}}=\frac{x^{2}}{x^{2}+c}$
Then take the derivative using the quotient rule: $k^{\prime}(x)=\frac{\left(x^{2}\right)^{\prime}\left(x^{2}+c\right)-x^{2}\left(x^{2}+c\right)^{\prime}}{\left(x^{2}+c\right)^{2}}=\frac{2 x\left(x^{2}+c\right)-x^{2} \cdot 2 x}{\left(x^{2}+c\right)^{2}}=$ $\frac{2 x c}{\left(x^{2}+c\right)^{2}}$

Example 4. Find the equation of the tangent line of the curve $y=\frac{3 x+1}{x^{2}+1}$ through the point $(1,2)$.
Solution: Denote the given function by $f(x): f(x)=\frac{3 x+1}{x^{2}+1}$. To find the tangent line of $f(x)$ at $(1,2)$, we need to find $f^{\prime}(1)$. Using the quotient rule

$$
f^{\prime}(x)=\frac{(3 x+1)^{\prime}\left(x^{2}+1\right)-(3 x+1)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}=\frac{3\left(x^{2}+1\right)-(3 x+1)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-3 x^{2}-2 x+3}{\left(x^{2}+1\right)^{2}}
$$

Plugging $x=1$, we get $f^{\prime}(1)=-1 / 2$. Plugging $f^{\prime}(1)=-1 / 2, f(1)=2$ into the equation of the tangent line, we get

$$
y-2=-\frac{1}{2}(x-1)
$$

Example 5. Find the points of the curve $y=2 x^{3}+3 x^{2}-12 x+1$ where the tangent is horizontal.
Solution: Tangent being horizontal means the derivate equals 0 . The derivative of the given function is $\left(2 x^{3}+3 x^{2}-12 x+1\right)^{\prime}=6 x^{2}+6 x-12$, setting it to 0 and solve for x,

$$
\begin{aligned}
& 6 x^{2}+6 x-12=0 \\
\Longleftrightarrow & x^{2}+x-2=0 \\
\Longleftrightarrow & (x+2)(x-1)=0 \\
\Longleftrightarrow & x=1,-2
\end{aligned}
$$

The curve has a horizontal tangent at $x=1,-2$.
Example 6. Let $f(x)=\left\{\begin{array}{ll}a x^{2} & \text { if } x \leq 1 \\ 3 x+b & \text { if } x>1\end{array}\right.$. Find the values of a and b that make f differentiable everywhere.
Solution: No matter what a and b are, $f(x)$ is differentiable on the intervals $(-\infty, 1)$ (as when $x<1$, $f(x)=a x^{2}$ is a polynomial and polynomial is differentiable), and $f(x)$ is differentiable on the intervals $(1, \infty)$. The only point left out is $x=1$. If we can take a and b such that $f^{\prime}(1)$ exists, then $f(x)$ is differentiable everywhere. What values of a and b make $f^{\prime}(1)$ exist? $f^{\prime}(1)$ exists means f is differentiable at 1 , then it must first be continuous. Continuity means $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$. You can work out these one sided limits: $\lim _{x \rightarrow 1^{-}} f(x)=a, \lim _{x \rightarrow 1^{+}} f(x)=3+b$. Since the left and right limits equal, we have

$$
a=3+b
$$

But continuity is not enough to ensure differentiability. Recall that by definition, $f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(1+h)-f(1)}{h}$. For this limit to exist, we need $\lim _{x \rightarrow 1^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{x \rightarrow 1^{+}} \frac{f(1+h)-f(1)}{h}$. You can work out these one sided limits: $\lim _{x \rightarrow 1^{-}} \frac{f(1+h)-f(1)}{h}=2 a$ and $\lim _{x \rightarrow 1^{+}} \frac{\substack{x \rightarrow 1 \\ f(1+h)-f(1)}}{h}=3$. Set them equal, we get

$$
2 a=3
$$

Combining the above two equations, we get $a=3 / 2, b=-3 / 2$.

