2.1 Problems

A Table and Some Graphs

Example 1. Approximate $f^{\prime}(3)$ using the table to the right:

x	1	2	3	4	5
$f(x)$	5	7	11	4	6

Solution $f^{\prime}(3)=\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \approx \frac{1}{2}\left(\frac{f(4)-f(3)}{4-3}+\frac{f(2)-f(3)}{2-3}\right)=\frac{1}{2}\left(\frac{4-11}{4-3}+\frac{7-11}{2-3}\right)=-3 / 2$

Example 2. For the function f whose graph is given to the right, arrange the following numbers in increasing order and explain your reasoning.
0

$$
\begin{equation*}
f^{\prime}(-2) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}(0) \tag{4}
\end{equation*}
$$

Solution $f^{\prime}(a)>0$ mean $f(x)$ is increasing at $a, f^{\prime}(a)<$ 0 means $f(x)$ is decreasing at a. Since $f^{\prime}(a)$ is the slope of the tangent line, the steeper the tangent line is, the larger the absolute value of $f^{\prime}(a)$ is. Hence

$$
f^{\prime}(0)<0<f^{\prime}(4)<f^{\prime}(2)<f^{\prime}(-2)
$$

Example 3. A particle starts by moving to the right along a horizontal line; the graph of its position function is below for $t \in[0,6]$ seconds.
(a) When is the particle moving to the right? Moving to the left? Standing still?
(b) Draw a graph of the velocity function.

Solution: the particle is moving to the right on $[0,2)$, to the left on $(2,3) \cup(4,6]$, and stand still on $(3,4)$.

Standard Problems

Example 4. Find $f^{\prime}(1)$ for $f(x)=2 x^{2}-3 x+5$
Solution: $f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{2(1+h)^{2}-3(1+h)+5-(2-3+5)}{h}=\lim _{h \rightarrow 0} \frac{h+2 h^{2}}{h}=\lim _{h \rightarrow 0}(1+2 h)=1$

Example 5. Find the equation of the tangent line for $f(t)=\frac{2 t+1}{t+3}$ at $t=4$.
Solution: Let us first simplify $f(x)$

$$
f(t)=\frac{2 t+1}{t+3}=\frac{2 t+6-5}{t+3}=\frac{2(t+3)-5}{t+3}=2-\frac{5}{t+3}
$$

Now we use this simplified f to compute the derivative.

$$
f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=\lim _{h \rightarrow 0} \frac{2-\frac{5}{4+h+3}-\left(2-\frac{5}{4+3}\right)}{h}=\lim _{h \rightarrow 0} \frac{5}{7(7+h)}=\frac{5}{49}
$$

The tangent line is

$$
y-f(4)=f^{\prime}(4)(x-4)
$$

Evaluate $f(4)=2-5 / 7=9 / 7$, inserting this and $f^{\prime}(4)=5 / 49$ to the above equation to obtain

$$
y-\frac{9}{7}=\frac{5}{49}(x-4)
$$

Example 6. Find the equation of the tangent line for $g(x)=\sqrt{5-x}$ at $x=1$.
Solution: $g^{\prime}(1)=\lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{5-(1+h)}-\sqrt{5-1}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{4-h}-2}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{4-h}-2}{h} \cdot \frac{\sqrt{4-h}+2}{\sqrt{4-h}+2}=\lim _{h \rightarrow 0} \frac{4-h-4}{h(\sqrt{4-h}+2)}=\lim _{h \rightarrow 0}-\frac{1}{\sqrt{4-h}+2}=-1 / 4$.
And $g(1)=\sqrt{5-1}=2$. Inserting these into the equation of the tangent line

$$
y-g(1)=g^{\prime}(x)(x-1)
$$

we obtain

$$
y-2=-\frac{1}{4}(x-1) .
$$

Non-Standard Problems

Example 7. Determine whether $f^{\prime}(0)$ exists in each case:
(a) $f(x)= \begin{cases}x^{2}+3 x & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}$

Solution: By definition $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$. We cannot directly evaluate this limit since $f(x)$ has different expressions on the two sides of 0 . We need to evaluate the left limit and the right limit separately.

$$
\begin{gathered}
\lim _{x \rightarrow 0-} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0-} \frac{0-0}{x-0}=0 \\
\lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0+} \frac{x^{2}+3 x-0}{x-0}=\lim _{x \rightarrow 0+} \frac{x^{2}+3 x}{x}=\lim _{x \rightarrow 0+} x+3=3
\end{gathered}
$$

Since the limit on the left does not agree with that on the right, the limit $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ does not exist. Hence $f^{\prime}(0)$ D.N.E.
(b) $f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Solution: By definition,

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}-0}{x-0}=\lim _{x \rightarrow 0} x \sin \frac{1}{x} .
$$

Next we use the Squeeze theorem to show that this limit is 0 . Multiplying each term in

$$
-1 \leq \sin \frac{1}{x} \leq 1
$$

by x, if $x \geq 0$, we have

$$
\begin{equation*}
-x \leq x \sin \frac{1}{x} \leq x \tag{1}
\end{equation*}
$$

if $x<0$, we have

$$
\begin{equation*}
-x \geq x \sin \frac{1}{x} \geq x \tag{2}
\end{equation*}
$$

Using the squeeze theorem, (1) implies

$$
\lim _{x \rightarrow 0^{+}} x \sin \frac{1}{x}=\lim _{x \rightarrow 0^{+}} x=\lim _{x \rightarrow 0^{+}}-x=0
$$

(2) implies

$$
\lim _{x \rightarrow 0^{-}} x \sin \frac{1}{x}=\lim _{x \rightarrow 0^{-}} x=\lim _{x \rightarrow 0^{-}}-x=0
$$

Hence

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
$$

