1.6 Problems

Limits Properties

Question 1. Consider the limits below:

$$
\begin{array}{lll}
\lim _{x \rightarrow 1} f(x)=2 & \lim _{x \rightarrow 1} g(x)=3 & \lim _{x \rightarrow 1} h(x)=5 \\
\lim _{x \rightarrow 2} f(x)=-2 & \lim _{x \rightarrow 2} g(x)=7 & \lim _{x \rightarrow 2} h(x)=-4 \\
\lim _{x \rightarrow 5} f(x)=0 & \lim _{x \rightarrow 5} g(x)=-1 & \lim _{x \rightarrow 5} h(x)=1
\end{array}
$$

Compute the following limits:
(a) $\lim _{x \rightarrow 1} f(x) g(x)=6$
(b) $\lim _{x \rightarrow 1} \frac{g(f(x))}{h(x)}=\frac{7}{5}$
(c) $\lim _{x \rightarrow 5} g(f(h(x)))=7$
(d) $\lim _{x \rightarrow 2}[3 f(x)+g(x)]=-6+7=1$

Fractions and Cancellation

Question 2. Evaluate the following limits:
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+x-4}=\frac{0}{2}=0$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+x-6}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x+3)(x-2)}=\lim _{x \rightarrow 2} \frac{x+2}{x+3}=4 / 5$
(c) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{9-x}=\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{9-x} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}=\lim _{x \rightarrow 9} \frac{x-9}{(9-x)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{-(9-x)}{(9-x)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{-1}{\sqrt{x}+3}=$ $-1 / 6$
(d) $\lim _{h \rightarrow 0} \frac{\frac{8}{h-4}+2}{h}=\lim _{h \rightarrow 0} \frac{\frac{8}{h-4}+\frac{2(h-4)}{h-4}}{h}=\lim _{h \rightarrow 0} \frac{\frac{2 h}{h-4}}{h}=\lim _{h \rightarrow 0} \frac{2}{h-4}=-1 / 2$

Limits with Abs Values

Question 3. Evaluate the following:
(a) $|5-1|=4$
(b) $|1-5|=4$

Question 4. Prove that $|a-b|=|b-a|$.
Solution: $|a-b|=$ the distance between a and $b=|b-a|$.

Question 5. Evaluate the limits
(a) $\lim _{x \rightarrow 1^{-}} \frac{|1-x|}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{1-x}{x-1}=-1$
(b) $\lim _{x \rightarrow 1^{-}} \frac{2 x(x+2)|1-x|}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{2 x(x+2)(1-x)}{x-1}=-6$

Inequality Limits

Question 6. If $9-x^{2} \leq g(x) \leq 9 \cos (2 x) \quad$ for all x, then find $\lim _{x \rightarrow 0} g(x)$
Solution: since $\lim _{x \rightarrow 0}\left(9-x^{2}\right)=9$, and $\lim _{x \rightarrow 0} 9 \cos (2 x)=9$, the squeeze theorem implies that $\lim _{x \rightarrow 0} g(x)=9$

Question 7. If $12 x-53 \leq f(x) \leq x^{2}+4 x-37$ for all x, then find $\lim _{x \rightarrow 4} f(x)$
Solution: since $\lim _{x \rightarrow 4} 12 x-53=-5$, and $\lim _{x \rightarrow 4} x^{2}+4 x-37=-5$, the squeeze theorem implies that $\lim _{x \rightarrow 0} f(x)=-5$

Question 8. Evaluate the limit: $\lim _{x \rightarrow 0}\left[x^{4} \sin \left(\frac{-3}{x}\right)\right]$
Solution: we start with the fact $-1 \leq \sin \left(\frac{-3}{x}\right) \leq 1$ for all x. Multiplying each term in these inequalities by x^{4} yields $-x^{4} \leq x^{4} \sin \left(\frac{-3}{x}\right) \leq x^{4}$. This provides a lower and an upper bound on the target function.
Observe that $\lim _{x \rightarrow 0}-x^{4}=0=\lim _{x \rightarrow 0} x^{4}$, the squeeze theorem implies that $\lim _{x \rightarrow 0}\left[x^{4} \sin \left(\frac{-3}{x}\right)\right]=0$.

