1.4, 1.5 Problems

Question 1. (a) Write down the equation of the secant line of $f(x)=x^{2}+1$ crossing points $(1, f(1))$ and $(2, f(2))$.

Solution:

$$
\text { slope }=\frac{f(2)-f(1)}{2-1}=\frac{5-2}{2-1}=3
$$

Since we have obtained the slope, all lines with this slope have the form $y=3 x+b$ with some b. To obtain b, plug in one point, say $(1, f(1))$ to $y=3 x+b$, we get

$$
2=3+b \Rightarrow b=-1
$$

Hence the equation of the secant line is $y=3 x-1$.
(b) Compute the slope of the secant line joining $(1, f(1))$ and $(h, f(h))$ with the same $f(x)$.

Solution:

$$
\text { slope }=\frac{f(h)-f(1)}{h-1}=\frac{h^{2}-1}{h-1}=\frac{(h+1)(h-1)}{h-1}=h+1
$$

(c) Use (b) to guess the instantaneous rate of change of f at $x=1$ (hint: the instantaneous rate of change the slope of the tangent line).

Solution: We use P and Q to denote the two points $(1, f(1)),(h, f(h))$ in (b). It is easy to see that as $h \rightarrow 1$, $Q \rightarrow P$.
Since the tangent line at P is the limit of the secant line (joining P and Q) as Q moves towards P, the slope of the tangent line at P is therefore the limit of the slope of the secant line as $h \rightarrow 1$, which means

$$
\text { slope of the tangent line }=\lim _{h \rightarrow 1}(h+1)=2
$$

Due to the hint, 2 is the instantaneous rate of change.

Question 2. Consider the graph of the function f below. Evaluate the following
(a) $\lim _{x \rightarrow 2^{-}} f(x)=2$
(b) $\lim _{x \rightarrow 2^{+}} f(x)=2$
(c) $\lim _{x \rightarrow 2} f(x)=2$
(d) $\lim _{x \rightarrow 3^{-}} f(x)=-1$
(e) $\lim _{x \rightarrow 3^{+}} f(x)=3$
(f) $\lim _{x \rightarrow 3} f(x)=$ D.N.E.
(g) $\lim _{x \rightarrow 5^{-}} f(x)=1$
(h) $\lim _{x \rightarrow 5^{+}} f(x)=4$
(i) $\lim _{x \rightarrow 5} f(x)=D . N . E$.
(j) $\lim _{x \rightarrow 7^{-}} f(x)=4$

(k) $\lim _{x \rightarrow 7^{+}} f(x)=1$
(1) $\lim _{x \rightarrow 7} f(x)=$ D.N.E.
(m) $\lim _{x \rightarrow 8^{-}} f(x)=-\infty$
(n) $\lim _{x \rightarrow 8^{+}} f(x)=2$
(o) $\lim _{x \rightarrow 8} f(x)=D \cdot N \cdot E$.

Question 3 (@ home bonus fun). Try to write down the function's equation from the graph in Question 3. (Hint: It should be piecewise defined)

Question 4. Determine the infinite limits. Your final answer should be one of: $\infty,-\infty$, or DNE.
(a) $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}=-\infty$
(b) $\lim _{x \rightarrow 1^{+}} \frac{-2}{(x-1)^{3}}=-\infty$
(c) $\lim _{x \rightarrow 2^{-}} \frac{3(x+4)}{x^{2}+2 x-8}=-\infty$
(d) $\lim _{x \rightarrow(\pi / 10)^{+}} x^{5} \tan (5 x)=-\infty$

Question 5. Given the functions below

$$
f(x)=\left\{\begin{array}{ll}
1+x & \text { if } x<-1 \\
x^{2} & \text { if }-1 \leq x<1 \\
2-x & \text { if } x \geq 1
\end{array} \quad g(x)=\left\{\begin{array}{ll}
1+\sin x & \text { if } x<0 \\
\cos x & \text { if } 0 \leq x \leq \pi \\
\sin x & \text { if } x>\pi
\end{array} \quad h(x)= \begin{cases}0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational }\end{cases}\right.\right.
$$

Evaluate the following limits:
(a) $\lim _{x \rightarrow 1^{+}} f(x)=1$
(b) $\lim _{x \rightarrow 1} f(x)=1$
(c) $\lim _{x \rightarrow 0^{-}} g(x)=1$
(d) $\lim _{x \rightarrow 0} g(x)=1$.
(e) $\lim _{x \rightarrow \pi^{-}} g(x)=-1$
(f) $\lim _{x \rightarrow 0} h(x)=D \cdot N \cdot E$.

