
Suggested solutions to DHW textbook exercises

Exercise 9.8

(a) Consider the distribution function of Txy when we have independence:

FTxy(t) = 1 − pt xy = 1 − pt x pt y

Differentiating, we get

fTxy(t) =
dFTxy(t)

dt

= − pt x

pt y

dt
−− pt y

pt x

dt
= − pt x

(
− pt yµy+t

)
− pt y (− pt xµx+t)

= pt x pt y (µy+t + µx+t) ,

which proves the result. Notice also that because

fTxy(t) = pt xyµx+t:y+t = pt x pt yµx+t:y+t,

when we have independence, the following holds:

µx+t:y+t = µx+t + µy+t

(b) Because of independence, we have

fTxTy(t, s) = fTx(t)fTy(s) = pt xµx+t · ps yµy+s.

Thus, since the insurance pays at the moment of death of (x) provided before the death
of (y), the actuarial present value can then be expressed as

Ā1
xy = E

[
vTx (Tx ≤ Ty)

]
=

∫ ∞

0

∫ ∞

t

vt pt xµx+t · ps yµy+sdsdt

=

∫ ∞

0

vt pt xµx+t

∫ t

0

ps yµy+sdsdt

=

∫ ∞

0

vt pt xµx+t · pt ydt

=

∫ ∞

0

vt pt xyµx+tdt

which give (9.13).
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(c) Here, the insurance pays at the moment of death of (x) provided (y) is dead. Thus, the
actuarial present value can be expressed as

Ā2
xy = E

[
vTx (Tx > Ty)

]
=

∫ ∞

0

∫ t

0

vt pt xµx+t · ps yµy+sdsdt

=

∫ ∞

0

vt pt xµx+t

∫ t

0

ps yµy+sdsdt

=

∫ ∞

0

vt pt xµx+t

(
1 − pt y

)
dt

=

∫ ∞

0

vt pt xµx+tdt−
∫ ∞

0

vt pt xyµx+tdt

= Āx − Ā1
xy

Since we know that the present value random variables satisfies

vTx = vTx (Tx ≤ Ty) + vTx (Tx > Ty) ,

taking expectations of both sides lead us to:

Āx = Ā1
xy + Ā2

xy

The insurance payable to (x) is paid either at the first death or the second death of (x).
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