Exercise 9.6

(a) By the independence assumption, we can write

$$
\begin{aligned}
{ }_{t} p_{x y} & ={ }_{t} p_{x} \times{ }_{t} p_{y} \\
& =\exp \left\{-\left[\frac{B c^{x}}{\log (c)}\left(c^{t}-1\right)\right]\right\} \times \exp \left\{-\left[\frac{B c^{y}}{\log (c)}\left(c^{t}-1\right)\right]\right\} \\
& =\exp \left[-\frac{B}{\log (c)}\left(c^{x}+c^{y}\right)\left(c^{t}-1\right)\right] \\
& =\exp \left[-\frac{B}{\log (c)} c^{w}\left(c^{t}-1\right)\right] \\
& ={ }_{t} p_{w}
\end{aligned}
$$

where the joint life $(x y)$ is replaced by a single life (w) where it satisfies

$$
c^{w}=c^{x}+c^{y}
$$

or equivalently we have

$$
w=\frac{\log \left(c^{x}+c^{y}\right)}{\log (c)}
$$

(b) First we write

$$
A_{x: y}^{1}=\sum_{k=0}^{\infty} v^{k+1}{ }_{k \mid} q_{x: y}^{1}
$$

where we note that

$$
\begin{aligned}
{ }_{k \mid} q_{x: y}^{1} & =\int_{k}^{k+1}{ }_{s} p_{x y} \mu_{x+s} d s \\
& =\int_{k}^{k+1}{ }_{s} p_{w} \times B c^{x+s} \frac{c^{w}}{c^{w}} d s \\
& =\frac{c^{x}}{c^{w}} \int_{k}^{k+1}{ }_{s} p_{w} \times B c^{w+s} d s \\
& =\frac{c^{x}}{c^{w}} \int_{k}^{k+1}{ }_{s} p_{w} \mu_{w+s} d s \\
& =\frac{c^{x}}{c^{w}}{ }_{k} q_{w} .
\end{aligned}
$$

This leads us finally to

$$
A_{x: y}^{1}=\sum_{k=0}^{\infty} v^{k+1} \frac{c^{x}}{c^{w}}{ }_{k \mid} q_{w}=\frac{c^{x}}{c^{w}} \sum_{k=0}^{\infty} v^{k+1}{ }_{k \mid} q_{w}=\frac{c^{x}}{c^{w}} A_{w} .
$$

