Exercise 9.16

(a) The APV of the death benefits is given by

$$
\begin{aligned}
\operatorname{APV}(\mathrm{DB}) & =10000 \bar{A}_{65: 60}+1000 \bar{A}_{\overline{65: 60}} \\
& =10000 \bar{A}_{65: 60}+1000\left(\bar{A}_{65}+\bar{A}_{60}-\bar{A}_{65: 60}\right) \\
& =10000(0.512589)+1000(0.473229+0.353789-0.512589) \\
& =5440.319
\end{aligned}
$$

(b) The APV of the reversionary benefits is given by

$$
\begin{aligned}
\mathrm{APV}(\mathrm{RB}) & =5000 \bar{a}_{60 \mid 65}+5000 \bar{a}_{65 \mid 60} \\
& =5000\left(\bar{a}_{65}+\bar{a}_{60}-2 \cdot \bar{a}_{65: 60}\right) \\
& =5000\left[\frac{1}{\delta}\left(1-\bar{A}_{65}\right)+\frac{1}{\delta}\left(1-\bar{A}_{60}\right)-2 \cdot \frac{1}{\delta}\left(1-\bar{A}_{65: 60}\right)\right] \\
& =5000(13.43094+16.47627-2 \cdot 12.42739) \\
& =25262.16
\end{aligned}
$$

(c) Let P denote the annual premium rate payable continuously.

$$
P=\frac{\mathrm{APV}(\mathrm{DB})+\mathrm{APV}(\mathrm{RB})}{\bar{a}_{65: 60}}=\frac{5440.319+25262.16}{12.42739}=2470.55
$$

(d) For the 10-th year policy value,
(i) if both are still alive:

$$
\begin{aligned}
{ }_{10} V & =\left[\mathrm{APV}\left(\mathrm{DB}_{10}\right)+\operatorname{APV}\left(\mathrm{RB}_{10}\right)\right]-P \bar{a}_{75: 70} \\
& =1000 \times\left[10 \bar{A}_{75: 70}+\bar{A}_{75: 70}+5\left(\bar{a}_{70 \mid 75}+\bar{a}_{75 \mid 70}\right)\right]-P \bar{a}_{75: 70}
\end{aligned}
$$

(ii) if husband is dead, but wife still alive (the superscript f to emphasize survival of wife):

$$
{ }_{10} V=1000 \bar{A}_{70}^{f}+5000 \bar{a}_{70}^{f}
$$

(iii) Thiele's differential equations satisfy:

$$
\frac{d}{d t}{ }_{t} V^{(0)}=\delta_{t} V^{(0)}+P-\mu_{65+t: 60+t}^{01}\left(10000+{ }_{t} V^{(1)}\right)-\mu_{65+t: 60+t}^{02}\left(10000+{ }_{t} V^{(2)}\right)
$$

if both are still alive, and

$$
\frac{d}{d t}{ }_{t} V^{(2)}=\delta_{t} V^{(2)}-\mu_{60+t}^{23}\left(1000-{ }_{t} V^{(2)}\right)
$$

if the husband is dead while the wife is still alive. The states are as defined as in Figure 9.2 (DHW, 2nd ed.).

