Exercise 9.12

(a) First we note that

$$
\begin{aligned}
(t-1) / m & p_{x y}-{ }_{t / m} p_{x y}
\end{aligned}={ }_{(t-1) / m} p_{x y}\left(1-{ }_{1 / m} p_{x y}\right) .
$$

gives the probability that the joint life $(x y)$ dies in the interval between $(t-1) / m$ and t / m. Thus, the following APV

$$
\sum_{t=1}^{m} v^{t / m}\left[(t-1) / m p_{x y}-{ }_{t / m} p_{x y}\right]=\sum_{t=1}^{m} v^{t / m} \times_{\left.\frac{t-1}{m} \right\rvert\, \frac{1}{m}} q_{x y}
$$

gives the expected present value of an insurance that pays $\$ 1$ at the end of the m-th interval in the period of death of the joint life $(x y)$ within one year. The failure of the joint life $(x y)$ is when the first death of (x) and (y) occurs. We can write this one-year APV as

$$
A_{1}^{(m)}=\sum_{t=1}^{m} v^{t / m} \times{ }_{\left.\frac{t-1}{m} \right\rvert\, \frac{1}{m}} q_{x y}
$$

(b) We can write the APV $A_{x y}^{(m)}$ as a double sum

$$
\begin{aligned}
& A_{x y}^{(m)}=\sum_{k=0}^{\infty}\left[\sum_{t=1}^{m} v^{k+(t / m)} \times{ }_{\left.k+\frac{t-1}{m} \right\rvert\, \frac{1}{m}} q_{x y}\right] \\
&=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y}\left[\sum_{t=1}^{m} v^{t / m} \times_{\left.\frac{t-1}{m} \right\rvert\, \frac{1}{m}} q_{x+k: y+k}\right] \\
&=\sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y} \times A_{1}^{(m)} \\
& x+k: y+k: 1 \mid
\end{aligned}
$$

which indicates as a sum of deferred one-year term insurances as in (a).
(c) It is best we start with the RHS of the equation and work our way to the LHS.

$$
\begin{aligned}
\frac{1}{m}\left(1-p_{x y}\right)+\frac{m-2 t+1}{m^{2}} q_{x} q_{y} & =\frac{1}{m}\left[1-\left(1-q_{x}\right)\left(1-q_{y}\right)\right]+\frac{1}{m} q_{x} q_{y}+\frac{1-2 t}{m^{2}} q_{x} q_{y} \\
& =\frac{1}{m}\left(q_{x}+q_{y}\right)+\frac{t^{2}-2 t+1}{m^{2}} q_{x} q_{y}-\frac{t^{2}}{m^{2}} q_{x} q_{y} \\
& =\frac{1}{m}\left(q_{x}+q_{y}\right)+\left(\frac{t-1}{m}\right)^{2} q_{x} q_{y}-\left(\frac{t}{m}\right)^{2} q_{x} q_{y} \\
& =\frac{1}{m}\left(q_{x}+q_{y}\right)+{ }_{(t-1) / m} q_{x(t-1) / m} q_{y}-{ }_{t / m} q_{x t / m} q_{y}
\end{aligned}
$$

Consider the last two terms in the equation above:

$$
\begin{aligned}
(t-1) / m & q_{x(t-1) / m} q_{y}-{ }_{t / m} q_{x t / m} q_{y}= \\
= & \left(1-{ }_{(t-1) / m} p_{x}\right)\left(1-{ }_{(t-1) / m} p_{y}\right)-\left(1-{ }_{t / m} p_{x}\right)\left(1-{ }_{t / m} p_{y}\right) \\
& -1+_{t / m} p_{x}+{ }_{t / m} p_{y}-{ }_{t / m} p_{x y} \\
= & \left({ }_{(t-1) / m} p_{x y}-{ }_{t / m} p_{x y}\right) \\
& +\left({ }_{(t-1) / m} p_{x}-{ }_{t / m} p_{x}\right)+\left({ }_{(t-1) / m} p_{y}-{ }_{t / m} p_{y}\right)
\end{aligned}
$$

It is not difficult to show that under the UDD assumption, the sum of the terms

$$
\left({ }_{(t-1) / m} p_{x}-{ }_{t / m} p_{x}\right)+\left({ }_{(t-1) / m} p_{y}-{ }_{t / m} p_{y}\right)=-\frac{1}{m}\left(q_{x}+q_{y}\right),
$$

so that we have

$$
\frac{1}{m}\left(1-p_{x y}\right)+\frac{m-2 t+1}{m^{2}} q_{x} q_{y}={ }_{(t-1) / m} p_{x y}-{ }_{t / m} p_{x y}
$$

which is exactly what we wanted to prove. In addition, we have

$$
\begin{aligned}
\sum_{t=1}^{m} v^{t / m}[(t-1) / m & \left.p_{x y}-{ }_{t / m} p_{x y}\right]
\end{aligned}=\left(1-p_{x y}\right) \sum_{t=1}^{m} \frac{1}{m} v^{t / m}+q_{x} q_{y} \sum_{t=1}^{m} v^{t / m} \frac{m-2 t+1}{m^{2}} .
$$

(d) Thus, under the assumptions in part (c), we approximate

$$
\underset{\substack{1 \\ x y: 1}}{(m)} \approx \frac{i}{i^{(m)}} v\left(1-p_{x y}\right)=\frac{i}{i^{(m)}} v q_{x y}
$$

so that from part (b), we have

$$
\begin{aligned}
A_{x y}^{(m)} & \approx \sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x y} \times \frac{i}{i^{(m)}} v q_{x+k: y+k} \\
& =\frac{i}{i^{(m)}} \sum_{k=0}^{\infty} v^{k+1}{ }_{k} p_{x y} \times q_{x+k: y+k} \\
& =\frac{i}{i^{(m)}} \sum_{k=0}^{\infty} v^{k+1}{ }_{k \mid} q_{x y} \\
& =\frac{i}{i^{(m)}} A_{x y}
\end{aligned}
$$

