Exercise 9.11

The APV of future benefits at issue is equal to

$$
\mathrm{APV}\left(\mathrm{FB}_{0}\right)=100000 \bar{A}_{28: 24}=100000 \int_{0}^{\infty} v^{t}{ }_{t} p_{28}^{m} p_{24}^{f}\left(\mu_{28+t}^{m}+\mu_{24+t}^{f}\right) d t
$$

where the superscripts m and f refer to the husband and wife, respectively. Let G denote the annual gross premium so that the APV of future premiums is equal to

$$
\operatorname{APV}\left(\mathrm{FP}_{0}\right)=G \ddot{a}_{28: 24: \overline{25}}^{(12)}
$$

Finally, the APV of future expenses at issue is equal to

$$
\operatorname{APV}\left(\mathrm{FE}_{0}\right)=250-0.03(G / 12)+0.03 G \ddot{a}_{28: 24: \overline{25}}^{(12)},
$$

where here $\ddot{a}_{28: 24: \overline{25}}^{(12)}$ denotes the APV of an annuity of $\$ 1$ per year payable monthly so long as both (28) and (24) are alive, up to 25 years:

$$
\ddot{a}_{28: 24: 251}^{(12)}=\frac{1}{12} \sum_{k=0}^{25-(1 / 2)} v^{k / 12}{ }_{k / 12} p_{28}^{m}{ }_{k / 12} p_{24}^{f}
$$

Solving for G, we get

$$
\begin{aligned}
G & =\frac{100000 \bar{A}_{28: 24}+250}{0.97 \ddot{a}_{28: 24: 251}^{(12)}+(0.03 / 12)} \\
& =\frac{100000(0.2484613)+250}{0.97(13.32663)+(0.03 / 12)} \\
& =1941.024
\end{aligned}
$$

so that the monthly premium is

$$
G / 12=1941.024 / 12=161.752
$$

```
mu28m <- function(t){
A <- 0.0001
B <- 0.0004
c <- 1.075
A + B*C^(28+t)}
tp28m <- function(t){
A <- 0.0001
B <- 0.0004
c <- 1.075
temp <- A*t + B*C^28*(c^t-1)/log(c)
exp(-temp)}
mu24f <- function(t){
A <- 0.0001
B <- 0.0003
```

```
c <- 1.07
A + B*C^(24+t)}
tp24f <- function(t){
A <- 0.0001
B <- 0.0003
c <- 1.07
temp <- A*t + B*C^24*(c^t-1)/log(c)
exp(-temp)}
i <- 0.05
v <- 1/(1+i)
h <- 1/1000
# limiting age
w <- 150
tt <- max(w-28,w-24)
t<- seq(0,tt,h)
vt <- v^t
intA <- vt*tp28m(t)*tp24f(t)*(mu28m(t)+mu24f(t))
apvfb <- 0
n <- 1
while (n<length(t)) {
n <- n+2
apvfb <- apvfb + (h/3)*(intA[n-2]+4*intA[n-1]+intA[n])
}
k<- seq}(0,25-(1/12),1/12
vk <- v^k
ann2824temp25 <- (1/12)*sum(vk*tp28m(k)*tp24f(k))
num <- 100000*apvfb + 250
den <- 0.97*ann2824temp25 + .03*(1/12)
G <- num/den
> apvfb
[1] 0.2484613
> ann2824temp25
[1] 13.32663
> G
[1] 1941.024
> G/12
[1] 161.752
```

Note the slight difference in the answer from that in the published text. This is because the book included a 3% of the first month's premium for expenses, as indicated below:

$$
\frac{G}{12}=\frac{100000 \bar{A}_{28: 24}+250}{0.97 \ddot{a}_{28: 24: \overline{25}}^{(12)}}=\frac{100000(0.2484613)+250}{0.97(13.32663)}=161.7833
$$

This is misleading because a renewal expense by definition does not include expense in the first premium.

