Exercise 8.6

(a) Since you cannot return to state 0 once you leave the state, we must have:

$$
{ }_{t} p_{30}^{00}={ }_{t} p_{30}^{\overline{00}}=\exp \left[-\int_{0}^{t}\left(\mu_{30+s}^{01}+\mu_{30+s}^{02}\right) d s\right]=\mathrm{e}^{-10^{-5} t} \times \mathrm{e}^{-A t-\frac{B c^{30}}{\log (c)}\left(c^{t}-1\right)} .
$$

Plug $t=10$ together with the given values of A, B and c, we get

$$
{ }_{10} p_{30}^{00}=0.9791219 .
$$

For the probability of being in state 1 at the end of 10 years, we have

$$
{ }_{10} p_{30}^{01}=\int_{0}^{10}{ }_{t} p_{30}^{00} \mu_{30+t}^{01} d t=\int_{0}^{10} \mathrm{e}^{-10^{-5} t} \times \mathrm{e}^{-A t-\frac{B c^{30}}{\log (c)}\left(c^{t}-1\right)} \times 10^{-5} d t .
$$

and for the probability of being in state 2 at the end of 10 years, we have

$$
{ }_{10} p_{30}^{02}=\int_{0}^{10}{ }_{t}{ }_{30}^{00} \mu_{30+t}^{02} d t=\int_{0}^{10} \mathrm{e}^{-10^{-5} t} \times \mathrm{e}^{-A t-\frac{B^{30}}{\log (c)}\left(c^{t}-1\right)} \times\left(A+B c^{30+t}\right) d t .
$$

Because states 1 and 2 are both absorbing states, both probabilities ${ }_{10} p_{30}^{01}$ and ${ }_{10} p_{30}^{02}$ can also be interpreted as the probabilities of being in that (respective) state by the end of 10 years. Neither integrals can be explicitly calculated but R codes show that

$$
{ }_{10} p_{30}^{01}=0.0000991
$$

and

$$
{ }_{10} p_{30}^{02}=0.0207791 .
$$

Note that the solutions printed in the textbook should be flip-flopped.

```
x <- 30
A <- 5*10^(-4)
B <- 7.6*10^(-5)
c <- 1.09
muxt01 <- 10^(-5)
muxt02 <- function(t){
out <- A + B*C^(x+t)
out}
tpx00 <- function(t){
temp1 <- exp(-muxt01*t)
temp2 <- exp(-A*t - (B*c^x)*(c^t-1)/log(c))
temp1*temp2}
integ01 <- function(s){
tpx00(s)*muxt01}
tpx01 <- function(t){
integrate(integ01, lower=0, upper=t)
```

```
}
integ02 <- function(s){
tpx00(s)*muxt02(s)}
tpx02 <- function(t){
integrate(integ02, lower=0, upper=t)
}
```

This produces the following result:

```
> tpx00(10)
[1] 0.9791219
> tpx01(10)
9.906477e-05 with absolute error < 1.1e-18
> tpx02(10)
0.02077908 with absolute error < 2.3e-16
```

(b) Let P denote the annual premium rate payable continuously. Then, the APV of future benefits at issue is given by

$$
\begin{aligned}
\mathrm{APV}\left(\mathrm{FB}_{0}\right) & =20000 \times \int_{0}^{10} v^{t}{ }_{t} p_{30}^{00} \mu_{30+t}^{01} d t+10000 \times \int_{0}^{10} v^{t}{ }_{t}{ }_{p}^{00} \mu_{30}^{02}{ }_{30+t} d t \\
& =20000(0.00007846)+10000(0.01602768)=1618.46
\end{aligned}
$$

and the APV of future premiums at issue is

$$
\operatorname{APV}\left(\mathrm{FP}_{0}\right)=P \times \int_{0}^{10} v^{t}{ }_{t} p_{30}^{00} d t=P \times 7.845802
$$

This leads us to

$$
P=\frac{1618.46}{7.845802}=206.2836
$$

The policy value at the end of 5 years can be expressed as

$$
{ }_{5} V=\mathrm{APV}\left(\mathrm{FB}_{5}\right)-\mathrm{APV}\left(\mathrm{FP}_{5}\right)
$$

where

$$
\begin{aligned}
\mathrm{APV}\left(\mathrm{FB}_{5}\right) & =10000 \times\left[2 \int_{0}^{10} v^{t}{ }_{t} p_{35}^{00} \mu_{35+t}^{01} d t+\int_{0}^{10} v^{t}{ }_{t} p_{35}^{00} \mu_{35+t}^{02} d t\right] \\
& =10000 \times[2(0.00004412)+0.01068526]=1077.351
\end{aligned}
$$

and

$$
\mathrm{APV}\left(\mathrm{FP}_{5}\right)=P \times \int_{0}^{10} v^{t}{ }_{t} p_{35}^{00} d t=P \times 4.412399=910.2054
$$

Thus, we have

$$
{ }_{5} V=1077.35-910.2054=167.1451
$$

The R code for the numerical computation required above is provided below for your convenience:

```
x <- 35
muxt01 <- 10^(-5)
muxt02 <- function(t){
out <- A + B*C^(x+t)
out}
tpx00 <- function(t){
temp1 <- exp(-muxt01*t)
temp2 <- exp(-A*t - (B*c^x)*(c^t-1)/log(c))
temp1*temp2}
V5 <- APVFB(5) - P*APVFP(5)
> V5
[1] 167.1451
```

