Exercise 8.3

Let P be the annual premium rate so that

$$
\begin{aligned}
\mathrm{APV}(\text { premiums }) & =P \times \int_{0}^{2} e^{-.05 t}{ }_{t} p_{50}^{00} d t \\
& =P \times \int_{0}^{2} e^{-.05 t}\left(\frac{2}{3} e^{-.015 t}+\frac{1}{3} e^{-.01 t}\right) d t \\
& =P \times \frac{1}{3}\left[\frac{2}{.065}\left(1-e^{-.065(2)}\right)+\frac{1}{.06}\left(1-e^{-.06(2)}\right)\right] \\
& =P \times 1.878523
\end{aligned}
$$

and

$$
\begin{aligned}
\text { APV(benefits) } & =60000 \times \int_{0}^{2} e^{-.05 t}{ }_{t} p_{50}^{00} d t \\
& =60000 \times \frac{2}{3} \int_{0}^{2} e^{-.05 t}\left(e^{-.01 t}-e^{-.015 t}\right) d t \\
& =60000 \times \frac{2}{3}\left[\frac{1}{.06}\left(1-e^{-.06(2)}\right)-\frac{1}{.065}\left(1-e^{-.065(2)}\right)\right] \\
& =368.1792
\end{aligned}
$$

Solving for the premium, we get $P=\frac{368.1792}{1.878523}=195.994$.

