Exercise 8.2

(a) The Actuarial Present Value of the benefit can be expressed as

$$
100000 \times \int_{0}^{5} e^{-\delta t}{ }_{t} p_{60}^{00}\left(\mu_{60+t}^{01}+\mu_{60+t}^{02}\right) d t
$$

(b) Since ${ }_{t} p_{60}^{00}={ }_{t} p_{60}^{\overline{00}}=e^{-.025 t}$, then this Actuarial Present Value equals

$$
100000 \times \int_{0}^{5} e^{-.05 t} e^{-.025 t}(0.025) d t=100000 \times \frac{.025}{.075}\left(1-e^{-.075 * 5}\right)=10,423.69
$$

