Exercise 8.16

(a) We can find from the Standard Ultimate Survival Model that

$$
q_{39}^{\prime(1)}=0.00049, \quad q_{40}^{\prime(1)}=0.00053, \quad q_{41}^{\prime(1)}=0.00057 .
$$

We need to convert the independent rates to multiple decrement rates. Because resignation occurs only at exact age 40 , it only affects the multiple decrement table at that point. According to the assumption of UDD for death and transfers, we have, for deaths:

$$
\begin{aligned}
& q_{39}^{(1)}=q_{39}^{\prime(1)}\left(1-0.5 q_{39}^{\prime(2)}\right)=0.00049(1-.5 * .09)=0.00046795 \\
& q_{40}^{(1)}=q_{40}^{\prime(1)}\left(1-0.5 q_{40}^{\prime(2)}\right)=0.00053(1-.5 * .10)=0.0005035 \\
& q_{41}^{(1)}=q_{41}^{\prime(1)}\left(1-0.5 q_{41}^{\prime(2)}\right)=0.00057(1-.5 * .11)=0.00053865
\end{aligned}
$$

and for transfers:

$$
\begin{aligned}
& q_{39}^{(2)}=q_{39}^{\prime(2)}\left(1-0.5 q_{39}^{\prime(1)}\right)=0.09(1-.5 * 0.00049)=0.08997795 \\
& q_{40}^{(2)}=q_{40}^{\prime(2)}\left(1-0.5 q_{40}^{\prime(1)}\right)=0.10(1-.5 * 0.00053)=0.0999735 \\
& q_{41}^{(2)}=q_{41}^{\prime(2)}\left(1-0.5 q_{41}^{\prime(1)}\right)=0.11(1-.5 * 0.00057)=0.1099687 .
\end{aligned}
$$

It should then be straightforward to verify the entries in the following multiple decrement table. The age 40+ denotes immediately following the resignations.

x	$\ell_{x}^{(\tau)}$	$d_{x}^{(1)}$	$d_{x}^{(2)}$	$d_{x}^{(3)}$
39	100,000	46.795	$8,997.795$	-
40	$90,955.41$			$18,191.08$
$40+$	$72,764.33$	36.63684	$7,274.505$	-
41	$65,453.19$	35.25636	$7,197.799$	-

(b) $\frac{\ell_{42}^{(\tau)}}{\ell_{39}^{(\tau)}}=\frac{65453.19-(35.25636+7197.799)}{100000}=\frac{58220.13}{100000}=0.5822013$
(c) $\frac{d_{41}^{(2)}}{\ell_{39}^{(\tau)}}=\frac{7197.799}{100000}=0.07197799$
(d) Suppose D is the annual deposit required. Then the APV of these deposits will be equal to

$$
D \times\left[1+v \frac{\ell_{40}^{(\tau)}}{\ell_{39}^{(\tau)}}+v^{2} \frac{\ell_{41}^{(\tau)}}{\ell_{39}^{(\tau)}}\right]=D \times\left[1+(1 / 1.08) \frac{72764.33}{100000}+(1 / 1.08)^{2} \frac{65453.19}{100000}\right]=D \times 2.234899
$$

The APV of the transfer grant is equal to (assuming transfers occur at the end of each birthday/year)

$$
\begin{aligned}
\text { APV }(\text { grant }) & =10000 \times\left[v \frac{d_{39}^{(2)}}{\ell_{39}^{(\tau)}}+v^{2} \frac{d_{40}^{(2)}}{\ell_{39}^{(\tau)}}+v^{3} \frac{d_{41}^{(2)}}{\ell_{39}^{(\tau)}}\right] \\
& =10000 \times\left[(1 / 1.08) \frac{8997.795}{100000}+(1 / 1.08)^{2} \frac{7274.505}{100000}+(1 / 1.08)^{3} \frac{7197.799}{100000}\right] \\
& =2028.185
\end{aligned}
$$

Solving for D, we get

$$
D=\frac{2028.185}{2.234899}=907.5063
$$

