Exercise 8.15

(a) ${ }_{3} p_{60}^{01}=\frac{d_{60}^{(1)}+d_{61}^{(1)}+d_{62}^{(1)}}{l_{60}}=\frac{350+360+380}{10000}=0.109$
(b) ${ }_{2} p_{61}^{00}=\frac{l_{63}}{l_{61}}=\frac{8945-(380+110+70)}{9475}=0.8849604$
(c) The APV of the benefit is

$$
10000 \times\left[v\left(\frac{25}{10000}\right)+v^{2}\left(\frac{45}{10000}\right)+v^{3}\left(\frac{70}{10000}\right)\right]=125.0945
$$

(d) The APV of the annuity benefit is

$$
1000 \times\left[1+v \frac{9475}{10000}+v^{2} \frac{8945}{10000}\right]=2,713.719
$$

Note that the answer here does not match exactly that in the book. You should be able to easily verify which one is correct.
(e) Starting with

$$
p_{62}^{(\tau)}=e^{-\mu_{62}^{(\tau)}}=\frac{8384}{8945}
$$

which implies that

$$
\mu_{62}^{(\tau)}=-\log (8384 / 8945)=0.06476959
$$

Because

$$
p_{62}^{01}=\frac{d_{62}^{(1)}}{l_{62}}=\int_{0}^{1}{ }_{t} p_{62}^{(\tau)} \mu_{62+t}^{01} d t=\frac{\mu_{62}^{01}}{\mu_{62}^{(\tau)}} \int_{0}^{1}{ }_{t} p_{62}^{(\tau)} \mu_{62+t}^{(\tau)} d t=\frac{\mu_{62}^{01}}{\mu_{62}^{(\tau)}}\left(1-p_{62}^{(\tau)}\right)
$$

this implies that

$$
\mu_{62}^{01}=\frac{d_{62}^{(1)}}{l_{62}} \frac{\mu_{62}^{(\tau)}}{\left(1-p_{62}^{(\tau)}\right)}=\frac{380}{8945} \frac{0.06476959}{1-(8385 / 8945)}=0.04387245
$$

Solving for the required value:

$$
q_{62}^{\prime(1)}=1-p_{62}^{\prime 01}=1-\exp \left(-\mu_{62}^{01}\right)=1-\exp (-0.04387245)=0.04292397
$$

(f) With the new $q_{62}^{\prime(1) \text {,new }}=0.1$, this implies the new force of mortality is

$$
\mu_{62}^{01, \text { new }}=-\log (1-0.1)=0.1053605
$$

(i) Assume constant force assumption: following the method in part (e), we get the forces of decrements

$$
\mu_{62}^{02}=\frac{d_{62}^{(2)}}{l_{62}} \frac{\mu_{62}^{(\tau)}}{\left(1-p_{62}^{(\tau)}\right)}=\frac{110}{8945} \frac{0.06476959}{1-(8385 / 8945)}=0.01269992
$$

and

$$
\mu_{62}^{03}=\frac{d_{62}^{(3)}}{l_{62}} \frac{\mu_{62}^{(\tau)}}{\left(1-p_{62}^{(\tau)}\right)}=\frac{70}{8945} \frac{0.06476959}{1-(8385 / 8945)}=0.008081767
$$

Because we know that

$$
p_{62}^{(\tau), \text { new }}=\exp \left(-\mu_{62}^{01, \text { new }}\right) \exp \left(-\mu_{62}^{02}\right) \exp \left(-\mu_{62}^{03}\right)=0.8814929
$$

so that

$$
\ell_{62}^{\text {new }}=\ell_{62} \times p_{62}^{(\tau) \text { new }}=8945 \times 0.8814929=7884.954
$$

Finally, we have
$d_{62}^{(1), \text { new }}=\ell_{62} \times \frac{\mu_{62}^{01, \text { new }}}{\mu_{62}^{(\tau), \text { new }}} \times\left(1-p_{62}^{(\tau), \text { new }}\right)=8945 \times \frac{0.01269992}{0.1261422} \times(1-0.8814929)=885.4058$
and
$d_{62}^{(2), \text { new }}=\ell_{62} \times \frac{\mu_{62}^{02}}{\mu_{62}^{(\tau), \text { new }}} \times\left(1-p_{62}^{(\tau), \text { new }}\right)=8945 \times \frac{0.1053605}{0.1261422} \times(1-0.8814929)=106.7248$
and

$$
d_{62}^{(3), \text { new }}=\ell_{62} \times \frac{\mu_{62}^{03}}{\mu_{62}^{(\tau), \text { new }}} \times\left(1-p_{62}^{(\tau), \text { new }}\right)=8945 \times \frac{0.008081767}{0.1261422} \times(1-0.8814929)=67.9158
$$

where we note that

$$
\mu_{62}^{(\tau), \text { new }}=\mu_{62}^{01, \text { new }}+\mu_{62}^{02}+\mu_{62}^{03}=0.1053605+0.01269992+0.008081767=0.1261422
$$

(ii) Assuming UDD in the single decrement models: first, we note

$$
\begin{aligned}
& q_{62}^{\prime(1), \text { new }}=0.1 \\
& q_{62}^{\prime(2)}=1-e^{-0.01269992}=0.01261962 \\
& q_{62}^{(3)}=1-e^{-0.008081767}=0.008049197
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
p_{62}^{01, \text { new }} & =\int_{0}^{1}{ }_{t} p_{62}^{(\tau)} \mu_{62+t}^{\prime 01, \text { new }} d t \\
& =q_{62}^{\prime(1)} \int_{0}^{1}\left(1-t q_{62}^{\prime(2)}\right)\left(1-t q_{62}^{\prime(3)}\right) d t \\
& =q_{62}^{\prime(1)} \times\left[1-\frac{1}{2}\left(q_{62}^{\prime(2)}+q_{62}^{\prime(3)}\right)+\frac{1}{3} q_{62}^{\prime(2)} q_{62}^{\prime(3)}\right] \\
& =0.09896995
\end{aligned}
$$

so that

$$
d_{62}^{(1), \text { new }}=8945 \times 0.09896995=885.2862
$$

Similarly for the other decrements, we have

$$
p_{62}^{02, \text { new }}=q_{62}^{\prime(2)} \times\left[1-\frac{1}{2}\left(q_{62}^{\prime(1), \text { new }}+q_{62}^{\prime(3)}\right)+\frac{1}{3} q_{62}^{\prime(1), \text { new }} q_{62}^{\prime(3)}\right]=0.01194123
$$

so that

$$
d_{62}^{(2), \text { new }}=8945 \times 0.01194123=106.8143
$$

and finally

$$
p_{62}^{03 \text {,new }}=q_{62}^{\prime(3)} \times\left[1-\frac{1}{2}\left(q_{62}^{\prime(1) \text { new }}+q_{62}^{\prime(2)}\right)+\frac{1}{3} q_{62}^{\prime(1) \text { new }} q_{62}^{\prime(2)}\right]=0.007599334
$$

so that

$$
d_{62}^{(2) \text { new }}=8945 \times 0.007599334=67.97605 .
$$

