Exercise 8.11

Denote the monthly premium by P so that the APV of future premiums can be expressed as

$$
\operatorname{APV}\left(\mathrm{FP}_{0}\right)=P \sum_{k=0}^{239} v_{k / 12}^{k / 12} p_{30}^{00}
$$

The APV of future benefits is given by

$$
\operatorname{APV}\left(\mathrm{FB}_{0}\right)=50000 \times \int_{0}^{20} v^{t}{ }_{t} p_{30}^{00} \mu_{30+t}^{01} d t+75000 \times \int_{0}^{20} v^{t}{ }_{t} p_{30}^{00} \mu_{30+t}^{02} d t
$$

The sums and integrals have to be numerically evaluated with the integrals being approximated using repeated Simpson's rule. Just as in Exercise 8.5, note that

$$
\begin{aligned}
{ }_{t} p_{x}^{00} & =\exp \left[-\int_{0}^{t}\left(\mu_{x+s}^{01}+\mu_{x+s}^{02}\right) d s\right] \\
& =\exp \left[-1.05\left(\int_{0}^{t} \mu_{x+s}^{01} d s\right)\right] \\
& =\exp \left[-1.05\left(A t+\frac{B c^{x}}{\log (c)}\left(c^{t}-1\right)\right)\right]
\end{aligned}
$$

Solving for the monthly premium, we get

$$
P=\frac{50000(0.08287766)+75000(0.004143883)}{159.0422}=28.00939 .
$$

Repeated Simpson's rule with step size $h=1 / 1000$ has been used to approximate the integral. The details of the calculations coded in R are given below:

```
x <- 30
A <- 0.0001
B <- 0.00035
c <- 1.075
mux01 <- function(t){
out <- A + B*C^(x+t)
out}
mux02 <- function(t){
out <- 0.05*mux01(t)
out}
tpx00 <- function(t){
temp <- B*C^x*(c^t - 1)/log(c)
out <- exp(-1.05*(A*t + temp))
out}
i <- 0.04
v <- 1/(1+i)
h <- 1/1000
t <- seq(0,20,h)
k <- seq(0,20-(1/12),1/12)
```

```
num1t <- v^t * tpx00(t) * mux01(t)
num2t <- v^t * tpx00(t) * mux02(t)
dentk <- v^k * tpx00(k)
apvfb1 <- 0
apvfb2 <- 0
apvfp <- sum(dentk)
n <- 1
while (n<length(t)) {
n <- n+2
apvfb1 <- apvfb1 + (h/3)*(num1t[n-2]+4*num1t[n-1]+num1t[n])
apvfb2 <- apvfb2 + (h/3)*(num2t[n-2]+4*num2t[n-1]+num2t[n])
}
P <- (50000*apvfb1 + 75000*apvfb2)/apvfp
> apvfb1
[1] 0.08287766
> apvfb2
[1] 0.004143883
> apvfp
[1] 159.0422
> P
[1] 28.00939
```

