Exercise 7.8

(a) Based on the equivalence principle, the net premium per year payable continuously can be expressed as

$$
P=200000 \times \frac{\bar{A}_{[40]: \overline{20]}}}{\bar{a}_{[40]: 20}},
$$

where

$$
\bar{a}_{[40]: 20]}=\int_{0}^{20} v^{t}{ }_{t} p_{[40]} d t=12.67553
$$

and

$$
\bar{A}_{[40]: \overline{20]}}=1-\log (1.05)(12.67553)=0.3815587
$$

Thus, it follows that

$$
P=200000 \times \frac{0.3815587}{12.67553}=6020.398
$$

Here, we note that $\bar{a}_{[40]: 20]}$ has been approximated based on repeated Simpson's rule with $h=1 / 100$.
(b) For a policy still in force at duration 4 , the policy value at that time can be expressed as

$$
\begin{aligned}
{ }_{4} V & =\mathrm{APV}\left(\mathrm{FB}_{4}\right)-\mathrm{APV}\left(\mathrm{FP}_{4}\right) \\
& =200000 \times \bar{A}_{44: \overline{16}}-P \times \bar{a}_{44: \overline{16}} \\
& =200000(0.4623625)-6020.398(11.01938)=26131.42
\end{aligned}
$$

Here, $\bar{a}_{[40]: 20 \mid}$ is similarly approximated based on repeated Simpson's rule with $h=1 / 100$.
(c) Revising the value of A to 0.0004 and holding all other assumptions, the (revised) policy value at duration 4 is

$$
\begin{aligned}
{ }_{4} V & =\mathrm{APV}\left(\mathrm{FB}_{4}\right)-\mathrm{APV}\left(\mathrm{FP}_{4}\right) \\
& =200000 \times \bar{A}_{44: \overline{16}}-P \times \bar{a}_{44: \overline{16}} \\
& =200000(0.4630335)-6020.398(11.00563)=26348.41
\end{aligned}
$$

(d) Increasing the value of A in the Makeham's law has the effect of worsening mortality which, not surprisingly in this case, potentially increased the policy value. The effect of a mortality revision is not significant in this case.
(e) Revising the value of i from 5% to 4% and holding all other assumptions, the (revised) policy value at duration 4 is

$$
\begin{aligned}
{ }_{4} V & =\mathrm{APV}\left(\mathrm{FB}_{4}\right)-\mathrm{APV}\left(\mathrm{FP}_{4}\right) \\
& =200000 \times \bar{A}_{44: \overline{166}}-P \times \bar{a}_{44: \overline{16}} \\
& =200000(0.5376978)-6020.398(11.7872)=36575.95
\end{aligned}
$$

(f) Clearly in this case, when interest rates earned on assets are lower than assumed, assets backing the reserves will grow at a much lower pace requiring therefore to hold much larger reserves than originally assumed. The effect of a change in interest rate is more dramatic than the effect of a mortality change, as previously observed.
(g) The (original) policy value, calculated based on the original set of assumptions, can be expressed as

$$
{ }_{k} V=200000 \times \bar{A}_{[40]+k: \overline{20-k}}-P \times \bar{a}_{[40]+k: \overline{20-k}} .
$$

Based on the proposed contract alteration of a proportionate paid-up sum insured, the (revised) policy value will be calculated as

$$
{ }_{k} V(\mathrm{RPU})=200000 \times(k / 20) \times \bar{A}_{[40]+k: \overline{20-k}}
$$

where RPU is to indicate "reduced paid-up" policy. Note that for such a policy, no future premiums are to be paid at duration k.
We compare these two policy values on a tabular basis as well as graphically in the following.

		portionate			oportionate
		Reduced			Reduced
	Original	Paid-Up		Original	Paid-Up
k	${ }_{k} V$	${ }_{k} V(\mathrm{RPU})$	k	${ }_{k} V$	${ }_{k} V(\mathrm{RPU})$
0	0.000	0.000			
1	6068.801	4003.556	11	85896.319	71188.467
2	12447.536	8400.982	12	96212.173	81487.995
3	19124.787	13220.896	13	107044.355	92633.056
4	26131.416	18494.499	14	118421.016	104683.733
5	33483.770	24254.873	15	130372.436	117704.582
6	41199.091	30537.290	16	142931.311	131765.095
7	49295.588	37379.361	17	156133.076	146940.252
8	57792.520	44821.211	18	170016.304	163311.161
9	66710.287	52905.664	19	184623.167	180965.816
10	76070.542	61678.455	20	200000.000	200000.000

Note that the policy value at duration 10 is 76070.542 , as opposed to $\$ 70070.54$ as printed in the answers in the DHW textbook.

The graphical comparison of the policy values between the original policy and that of the reduced paid-up indicates that, as reasonably should be the case, the reduced paid-up always yield a lower policy value. Generally, for life insurance contracts, early surrender of policies is highly discouraged which does not appear to be in this situation.

