Exercise 7.7

The loss due to mortality is given by

$$
\left(100 q_{65}-1\right) \times\left(100000+200-{ }_{6} V\right)=(100(0.005914652)-1) \times(100000+200-35324)=-26504.1
$$

Here note that we have used as many decimal places (computed separately) for q_{65} rather than the value 0.0059 published in the text because rounding will not exactly match the results. The expected interest earned for the year is

$$
100 \times 0.05 \times\left({ }_{5} V+0.95 \times P\right)=100 \times 0.05 \times(29068+0.95 \times 5200)=170040
$$

The actual interest earned is

$$
100 \times 0.065 \times\left({ }_{5} V+0.95 \times P\right)=100 \times 0.065 \times(29068+0.95 \times 5200)=221052
$$

so that the difference gives the gain due to interest:

$$
221052-170040=51012
$$

The expected expenses for the year are

$$
100 \times 0.05 \times P \times 1.065+200=27890
$$

and the corresponding actual expenses are

$$
100 \times 0.06 \times P \times 1.065+250=33478
$$

The loss due to higher than expected expenses is therefore

$$
27890-33478=-5588
$$

Thus, we see that the total gain for the year consists of the sum of these three components:

$$
-26504.1+51012-5588=18919.9
$$

(Slight rounding may have resulted from the rounding of the policy values.)

