Exercise 7.5

(a) Let P denote the annual premium rate payable continuously. The present value of future benefits at issue can be expressed as

$$
\operatorname{PVFB}_{0}= \begin{cases}T_{30} P v^{T_{30}}, & \text { for } T_{30} \leq 10 \\ 10 P v^{T_{30}}, & \text { for } 10<T_{30} \leq 30 \\ v^{30} \ddot{\ddot{a}} \frac{(12)}{K_{30}^{(12)}+(1 / 12)-30}, & \text { for } T_{30}>30\end{cases}
$$

The present value of future premiums at issue can be expressed as

$$
\operatorname{PVFP}_{0}= \begin{cases}P \bar{a}_{\overline{T_{30}}}, & \text { for } T_{30} \leq 10 \\ P \bar{a}_{\overline{10}}, & \text { for } T_{30}>10\end{cases}
$$

The future loss random variable L_{0} is the difference between the two:

$$
L_{0}=\mathrm{PVFB}_{0}-\operatorname{PVFP}_{0}= \begin{cases}T_{30} P v^{T_{30}}-P \bar{a}_{\overline{T_{30}}}, & \text { for } T_{30} \leq 10 \\ 10 P v^{T_{30}}-P \bar{a}_{\overline{10}}, & \text { for } 10<T_{30} \leq 30 \\ v^{30} \ddot{\ddot{a}} \frac{(12)}{K_{30}^{(12)}+(1 / 12)-30}-P \bar{a}_{\overline{10}}, & \text { for } T_{30}>30\end{cases}
$$

(b) The actuarial present value of future premiums at issue is

$$
\operatorname{APV}(\mathrm{FP})=P \bar{a}_{30: \overline{10}}
$$

The actuarial present value of future benefits at issue is

$$
\mathrm{APV}(\mathrm{FB})=P(\bar{I} \bar{A})_{30: \overline{10}}^{1}+10 P_{10} E_{30} \bar{A}_{40: \overline{20}}^{1}+{ }_{30} E_{30} \ddot{a}_{60}^{(12)} .
$$

Equating the two APV's by the equivalence principle, we get

$$
P=\frac{{ }_{30} E_{30} \ddot{a}_{60}^{(12)}}{\bar{a}_{30: \overline{10}}-(\bar{I} \bar{A})_{30: 10 \mid}^{1}-10_{10} E_{30} \bar{A}_{40: \overline{20}}^{1}}
$$

(c) For a policy still in force at duration 5, the present value of future loss random variable can be expressed as

$$
L_{5}=\mathrm{PVFB}_{5}-\operatorname{PVFP}_{5}= \begin{cases}\left(5+T_{35}\right) P v^{T_{35}}-P \bar{a}_{\overline{T_{35}}}, & \text { for } T_{35} \leq 5 \\ 10 P v^{T_{35}}-P \bar{a}_{\overline{5}}, & \text { for } 5<T_{35} \leq 25 \\ v^{25} \ddot{\ddot{a}} \frac{(12)}{K_{35}^{(12)}+(1 / 12)-25}-P \bar{a}_{5}, & \text { for } T_{35}>25\end{cases}
$$

(d) For a policy still in force at duration 5, the policy value can be derived using

$$
\operatorname{APV}\left(\mathrm{FP}_{5}\right)=P \bar{a}_{35: 5}
$$

and

$$
\mathrm{APV}\left(\mathrm{FB}_{5}\right)=5 \bar{A}_{35: 5}^{1}+P(\bar{I} \bar{A})_{35: 51}^{1}+10 P_{5} E_{35} \bar{A}_{40: \overline{20 \mid}}^{1}+{ }_{25} E_{35} \ddot{a}_{60}^{(12)}
$$

The policy value at duration 5 is therefore

$$
{ }_{5} V=5 \bar{A}_{35: 51}^{1}+P(\bar{I} \bar{A})_{35: 51}^{1}+10 P_{5} E_{35} \bar{A}_{40: \overline{20}}^{1}+{ }_{25} E_{35} \ddot{a}_{60}^{(12)}-P \bar{a}_{35: 5} .
$$

