Exercise 7.4

(a) With a starting policy value of ${ }_{0} V=0$, we use the recursive formula to calculate the next year's policy value:

$$
\left({ }_{0} V+P\right)(1+i)={ }_{1} V+q_{[50]}\left(1000+{ }_{1} V-{ }_{1} V\right) .
$$

This simplifies to

$$
{ }_{1} V=P(1+i)-1000 q_{[50]}
$$

Following the same development, the following year's policy value can be determined based on

$$
\left({ }_{1} V+P\right)(1+i)={ }_{2} V+q_{[50]+1}\left(1000+{ }_{2} V-{ }_{2} V\right)
$$

which simplifies to

$$
\begin{aligned}
{ }_{2} V & =\left({ }_{1} V+P\right)(1+i)-1000 q_{[50]+1} \\
& =\left(P(1+i)-1000 q_{[50]}+P\right)(1+i)-1000 q_{[50]+1} \\
& =P\left[(1+i)^{2}+(1+i)\right]-1000\left[q_{[50]}(1+i)+q_{[50]+1}\right]
\end{aligned}
$$

After 2 years, the death benefits are level at 20000 and at that time, the select period has expired so that the second year policy value can also be calculated using

$$
{ }_{2} V=\mathrm{APV}(\mathrm{FB})-\mathrm{APV}(\mathrm{FP})=20000 A_{52}-P \ddot{a}_{52}
$$

Equating the two reserve equations, this leads us to a solution of P :

$$
P=\frac{20000 A_{52}+1000\left[q_{[50]}(1+i)+q_{[50]+1}\right]}{\ddot{a}_{52}+\left[(1+i)^{2}+(1+i)\right]} .
$$

We can verify the following values based on the Standard Select Survival Model but with $i=6 \%$:

$$
\ddot{a}_{52}=14.87918 \text { and } A_{52}=0.1577825
$$

and

$$
q_{[50]}=0.001033293 \text { and } q_{[50]+1}=0.001264444
$$

and therefore, by substituting these values, we have

$$
P=\frac{20000(0.1577825)+1000[0.001033293(1.06)+0.001264444]}{14.87918+\left(1.06^{2}+1.06\right)}=185.0818 .
$$

The policy value at the end of the second year is therefore

$$
{ }_{2} V=20000(0.1577825)-185.0818(14.87918)=401.7849
$$

(b) The policy value at $t=2.25$, a period between valuation dates, can be exactly calculated again using the principle of recursion as

$$
{ }_{2.25} V=20000 \times v^{0.75}{ }_{.75} q_{52.25}+v^{0.75}{ }_{.75} p_{52.25} \times{ }_{3} V
$$

It can be verified that

$$
{ }_{3} V=20000 A_{53}-P \ddot{a}_{53}=20000(0.1660246)-185.0818(14.73357)=593.576
$$

and that

$$
{ }_{.75} p_{52.25}=\exp \left[-A(0.75)-\frac{B}{\log (c)} c^{52.25}\left(c^{0.75}-1\right)\right]=0.9988847
$$

where A, B, and c are the constants in the Standard Select survival model. By simple substitution of values, we finally arrive at

$$
{ }_{2.25} V=20000 \times(1.06)^{-0.75}(1-0.9988847)+(1.06)^{-0.75}(0.9988847) \times 593.576=588.9127
$$

An approximation to this policy value at an interim date is one found at the bottom of page 206 of the text:

$$
\begin{aligned}
{ }_{2.25} V & \approx\left({ }_{2} V+P\right) \times 0.75+{ }_{3} V \times 0.25 \\
& =(401.7849+185.0818) \times 0.75+593.576 \times 0.25 \\
& =588.544 .
\end{aligned}
$$

