Exercise 7.20

(a) Calculating the first year FPT premium, we have

$$
{ }_{1} P_{[50]}=100,000 \times v q_{[50]}=100,000 \times(1 / 1.04) \times[1-(98450.67 / 98552.51)]=99.36132
$$

If we let β to be the renewal premium, then it is clear that

$$
\beta=\frac{P \ddot{a}_{[50]: \overline{20]}}-{ }_{1} P_{[50]}}{\ddot{a}_{[50]: \overline{20]}}-1}
$$

where P is the net annual premium equal to

$$
P=100,000 \frac{A_{[50]}}{\ddot{a}_{[50]: 20]}}=100,000 \frac{0.255698}{13.86135}=1844.684
$$

Plugging the appropriate values, we get

$$
\beta=\frac{1844.684(13.86135)-99.36132}{13.86135-1}=1980.386
$$

(b) First, consider gross premium valuation. At issue, the APV of future gross premiums is

$$
\mathrm{APV}(\mathrm{FG})=G \ddot{a}_{[50]: \overline{20}}
$$

and the APV of future benefits is

$$
\mathrm{APV}(\mathrm{FB})=100000 \times A_{[50]}
$$

and the APV of future expenses is

$$
\mathrm{APV}(\mathrm{FE})=0.47 G+225+0.03 G \ddot{a}_{[50]: \overline{20 \mid}}+25 \ddot{a}_{[50]: 20 \mid}
$$

Thus, from equivalence principle, we have

$$
G=\frac{100000 \times A_{[50]}+225+25 \ddot{a}_{[50]: \overline{20]}}}{0.9725 \ddot{a}_{[50]: 20]}-0.47}=\frac{26141.33}{12.97551}=2014.668 .
$$

Thus, the gross premium reserves for $t=0,1,2$ and 10 are:

$$
\begin{aligned}
& { }_{0} V^{g}=0 \\
& { }_{1} V^{g}=\frac{\left({ }_{0} V^{g}+0.5 G-250\right)(1.04)-100000 q_{[50]}}{1-q_{[50]}}=684.9992
\end{aligned}
$$

where $q_{[50]}=0.001033358$

$$
{ }_{2} V^{g}=\frac{\left({ }_{1} V^{g}+0.97 G-25\right)(1.04)-100000 q_{[50]+1}}{1-q_{[50]+1}}=2595.639
$$

where $q_{[50]+1}=0.00126439$
Finally for $t=10$, we have

$$
\begin{aligned}
{ }_{10} V^{g} & =100000 A_{60}+(25-0.97 G) \ddot{a}_{60: 10} \\
& =100000(0.3629975)+(25-0.97(2014.668))(8.273434) \\
& =20338.41
\end{aligned}
$$

For net premium valuation, we have the net annual premium equal to $P=1844.684$ from part (a). Thus, the net premium reserves for $t=0,1,2$ and 10 are:

$$
\begin{aligned}
{ }_{0} V^{n} & =0 \\
{ }_{1} V^{n} & =\frac{(0+P)(1.04)-100000 q_{[50]}}{1-q_{[50]}}=1817.013 \\
{ }_{2} V^{n} & =\frac{\left({ }_{1} V^{n}+P\right)(1.04)-100000 q_{[50]+1}}{1-q_{[50]+1}}=3686.386 \\
{ }_{10} V^{n} & =100000 A_{60}-P \ddot{a}_{60: 10]}=100000(0.3629975)-(1844.684)(8.273434)=21037.88
\end{aligned}
$$

For FPT reserve calculation, we need the first and renewal year's premiums computed in (a):

$$
\alpha=99.36132 \quad \beta=1980.386
$$

Thus, the FPT reserves for $t=0,1,2$ and 10 are:

$$
\begin{aligned}
{ }_{0} V^{\mathrm{FPT}} & =0 \\
{ }_{1} V^{\mathrm{FPT}} & =0 \\
{ }_{2} V^{\mathrm{FPT}} & =\frac{\left({ }_{1} V^{\mathrm{FPT}}+\beta\right)(1.04)-100000 q_{[50]+1}}{1-q_{[50]+1}}=1935.61 \\
{ }_{10} V^{\mathrm{FPT}}= & 100000 A_{60}-\beta \ddot{a}_{60: \overline{10]}}=100000(0.3629975)-(1980.386)(8.273434)=19915.15
\end{aligned}
$$

