Exercise 7.2

First we calculate the premium. Let P be the required annual benefit premium and based on the equivalence principle, we have

$$
P=\frac{50000 \times A_{40}+50000 \times{ }_{20} E_{40} A_{60}}{\ddot{a}_{40: \overline{20}}}=50000 \times \frac{A_{40}+{ }_{20} E_{40} A_{60}}{\ddot{a}_{40}-{ }_{20} E_{40} \ddot{a}_{60}}
$$

where from the SUSM tables in the book, we get
$\ddot{a}_{40}=18.458, \quad \ddot{a}_{60}=14.904 \quad A_{40}=0.12106, \quad A_{60}=0.29028 \quad$ and $\quad{ }_{20} E_{40}=0.36663$
Thus, it follows that

$$
P=50000 \times \frac{0.12106+(0.36663)(0.29028)}{18.458-(0.36663)(14.904)}=50000 \times \frac{0.2274854}{12.99375}=875.3648
$$

The net premium reserve at the end of 10 years is

$$
\begin{aligned}
{ }_{10} V & =\operatorname{APV}\left(\mathrm{FB}_{10}\right)-\mathrm{APV}\left(\mathrm{FP}_{10}\right) \\
& =50000 \times\left(A_{50}+{ }_{10} E_{50} A_{60}\right)-P \times\left(\ddot{a}_{50}-{ }_{10} E_{50} \ddot{a}_{60}\right) \\
& =50000 \times(0.18931+(0.60182)(0.29028))-875.3648 \times(17.025-(0.60182)(14.904)) \\
& =18200.32-7051.479=11,148.84
\end{aligned}
$$

