Exercise 7.18

First, we calculate the single premium, and let this be P. Then we have

$$
\begin{aligned}
P & =\operatorname{APV}\left(\mathrm{FB}_{0}\right)=\int_{0}^{20} P(1+i)^{t} v^{t}{ }_{t} p_{x+t} \mu_{x+t} d t+50000_{20} E_{x} \bar{a}_{x+20} \\
& =P_{20} q_{x}+50000_{20} E_{x} \bar{a}_{x+20}
\end{aligned}
$$

Solving for P, we get

$$
P=50000 \frac{v^{20}{ }_{20} p_{x} \bar{a}_{x+20}}{1-{ }_{20} q_{x}}=50000 v^{20} \bar{a}_{x+20}
$$

(a) During the deferred period, we have $t \leq 20$. Prospectively, the reserve is the actuarial present value of future benefits minus the actuarial present value of future premiums; because it is a single premium, there are no premiums more to be collected. Thus, we have the prospective reserve formula:

$$
\begin{aligned}
{ }_{t} V & =\mathrm{APV}\left(\mathrm{FB}_{t}\right) \\
& =\int_{0}^{20-t} P(1+i)^{s} v^{s-t}{ }_{s} p_{x+t} \mu_{x+t+s} d s+50000_{20-t} E_{x+t} \bar{a}_{x+20} \\
& =P(1+i)^{t}{ }_{20-t} q_{x+t}+50000_{20-t} E_{x+t} \bar{a}_{x+20}
\end{aligned}
$$

After the deferred period, $t>20$, the prospective reserve formula is clearly

$$
{ }_{t} V=50000 \bar{a}_{x+t}
$$

since only the annuity payments are being disbursed during this period.
(b) During the deferred period, we have $t \leq 20$. Retrospectively, the reserve is the actuarial accumulated value of past premiums minus the actuarial accumulated value of past benefits. Thus, we have the retrospective reserve formula:

$$
\begin{aligned}
{ }_{t} V & =\frac{P}{{ }_{t} E_{x}}-\frac{\int_{0}^{t} P(1+i)^{s} v^{s}{ }_{s} p_{x} \mu_{x+s} d s}{{ }_{t} E_{x}} \\
& =\frac{P\left(1-{ }_{t} q_{x}\right)}{v^{t}{ }_{t} p_{x}}=P(1+i)^{t}
\end{aligned}
$$

After the deferred period, $t>20$, the retrospective reserve formula is

$$
{ }_{t} V=\frac{P}{{ }_{t} E_{x}}-\frac{P_{20} q_{x}+50000_{20} E_{x} \bar{a}_{x+20: \overline{t-20}}}{{ }_{t} E_{x}}
$$

(c) For $t \leq 20$, starting with the prospective formula, we have

$$
\begin{aligned}
\text { Prospective } & =P(1+i)^{t}{ }_{20-t} q_{x+t}+50000_{20-t} E_{x+t} \bar{a}_{x+20} \\
& =P(1+i)^{t}{ }_{20-t} q_{x+t}+P(1+i)^{20} v^{20-t}{ }_{20-t} p_{x+t} \\
& =P(1+i)^{t}\left({ }_{20-t} q_{x+t}+{ }_{20-t} p_{x+t}\right)=P(1+i)^{t} \\
& =\text { Retrospective }
\end{aligned}
$$

The second line follows because

$$
P=50000 v^{20} \bar{a}_{x+20} \quad \text { or equivalently } \quad P(1+i)^{20}=50000 \bar{a}_{x+20}
$$

For $t>20$, starting with the retrospective formula, by substituting

$$
\bar{a}_{x+20: \overline{t-20}}=\bar{a}_{x+20}-{ }_{20-t} E_{x+t} \bar{a}_{x+t}
$$

we have

$$
\begin{aligned}
\text { Retrospective } & =\frac{P}{{ }_{t} E_{x}}-\frac{P_{20} q_{x}+50000_{20} E_{x} \bar{a}_{x+20}-50000_{20} E_{x 20-t} E_{x+t} \bar{a}_{x+t}}{{ }_{t} E_{x}} \\
& =\frac{50000_{t} E_{x} \bar{a}_{x+t}}{{ }_{t} E_{x}}=50000 \bar{a}_{x+t} \\
& =\text { Prospective }
\end{aligned}
$$

The last line follows because

$$
P=P_{20} q_{x}+50000_{20} E_{x} \bar{a}_{x+20}
$$

and that

$$
{ }_{20} E_{x 20-t} E_{x+t}={ }_{t} E_{x}
$$

