Exercise 7.15

In the subsequent development of the formulas, we shall denote by P the applicable single benefit premium to be paid at time of policy issue.
(a) Starting with ${ }_{0} V=0$, the recurrence relation between subsequent policy values are:

$$
{ }_{1} V=\frac{\left({ }_{0} V+P\right)(1+i)-q_{[60]}}{1-q_{[60]}}=\frac{P(1+i)-q_{[60]}}{1-q_{[60]}}
$$

and

$$
{ }_{t+1} V=\frac{{ }_{t} V(1+i)-q_{[60]+t}}{1-q_{[60]+t}}
$$

for $t=1,2, \ldots, 18$, and for year 20 , we have ${ }_{20} V=0$.
(b) Following the same principle as in (a), start with ${ }_{0} V=0$ and with steps of h years, we have

$$
{ }_{h} V=\frac{P(1+i)^{h}-{ }_{h} q_{[60]}}{1-{ }_{h} q_{[60]}},
$$

and

$$
{ }_{t+h} V=\frac{{ }_{t} V(1+i)^{h}-{ }_{h} q_{[60]+t}}{1-{ }_{h} q_{[60]+t}}
$$

for $t=h, 2 h, \ldots, 20-2 h$, and for year 20 , we have ${ }_{20} V=0$.
(c) From (b), we have

$$
{ }_{t+h} V\left(1-{ }_{h} q_{[60]+t}\right)={ }_{t} V(1+i)^{h}-{ }_{h} q_{[60]+t},
$$

so that

$$
\left.\frac{t+h}{t} V-{ }_{t} V\right)=\frac{1}{h} \times\left\{{ }_{t} V\left[(1+i)^{h}-1\right]-{ }_{h} q_{[60]+t}\left(1-{ }_{t+h} V\right)\right\} .
$$

By noting that when we let $h \rightarrow 0$, we have

$$
\begin{aligned}
& \lim _{h \rightarrow 0}\left[\frac{t+h}{h}{ }_{t} V\right. \\
& \lim _{h \rightarrow 0}\left[\frac{(1+i)^{h}-1}{h}\right]=\delta \\
& \lim _{h \rightarrow 0} \frac{d}{} \frac{{ }_{h} q_{[60]+t}}{h}=\mu_{[60]+t}
\end{aligned}
$$

and finally, of course,

$$
\lim _{h \rightarrow 0}\left(1-{ }_{t+h} V\right)=1-{ }_{t} V .
$$

This leads us to the following desired result:

$$
\frac{d}{d t}{ }_{t} V={ }_{t} V \cdot \delta-\mu_{[60]+t}\left(1-{ }_{t} V\right)=\left(\mu_{[60]+t}+\delta\right)_{t} V-\mu_{[60]+t} .
$$

(d) Start with

$$
\begin{aligned}
{ }_{t} V & =\bar{A}_{[60]+t: \overline{20-t]}}^{1} \\
& =\int_{0}^{20-t} e^{-\delta s}{ }_{s} p_{[60]+t} \mu_{[60]+t+s} d s \\
& =\frac{1}{e^{-\delta t}{ }_{t} p_{[60]}} \int_{0}^{20-t} e^{-\delta(s+t)}{ }_{s+t} p_{[60]} \mu_{[60]+s+t} d s
\end{aligned}
$$

Applying a change of variable of integration $r=s+t$ so that $d r=d s$, we then have

$$
{ }_{t} V=\frac{1}{e^{-\delta t}{ }_{t} p_{[60]}} \int_{t}^{20} e^{-\delta r}{ }_{r} p_{[60]} \mu_{[60]+r} d r .
$$

Finally, the next step is to take the derivative of both sides with respect to t and show that this leads us to the differential equation derived in (c). First, we note the following results are easy to verify:

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-\delta t}{ }_{t} p_{[60]}\right)^{-1} & =\left(e^{-\delta t}{ }_{t} p_{[60]}\right)^{-2} \times\left[-e^{-\delta t}\left({ }_{t} p_{[60]} \mu_{[60]+t}\right)-\delta e^{-\delta t}{ }_{t} p_{[60]}\right] \\
& =\frac{1}{e^{-\delta t}{ }_{t} p_{[60]}} \times\left(\delta+\mu_{[60]+t}\right)
\end{aligned}
$$

and

$$
\frac{d}{d t} \int_{t}^{20} e^{-\delta r}{ }_{r} p_{[60]} \mu_{[60]+r} d r=-e^{-\delta t}{ }_{t} p_{[60]} \mu_{[60]+t} .
$$

Applying product rule of derivative, we then get

$$
\frac{d}{d t}{ }_{t} V=\frac{\delta+\mu_{[60]+t}}{e^{-\delta t}{ }_{t} p_{[60]}} \times \int_{t}^{20} e^{-\delta r}{ }_{r} p_{[60]} \mu_{[60]+r} d r-\frac{1}{e^{-\delta t}{ }_{t} p_{[60]}} \times e^{-\delta t}{ }_{t} p_{[60]} \mu_{[60]+t}
$$

Simplifying,

$$
\begin{aligned}
\frac{d}{d t}{ }_{t} V & =\left(\delta+\mu_{[60]+t}\right) \times \bar{A}_{[60]+t: 20-t]}^{1}-\mu_{[60]+t} \\
& =\left(\delta+\mu_{[60]+t}\right) \times{ }_{t} V-\mu_{[60]+t} \\
& =\left(\mu_{[60]+t}+\delta\right)_{t} V-\mu_{[60]+t}
\end{aligned}
$$

which proves the result.

