Exercise 7.12

(a) Let G be the required annual gross premium. The APV of future premiums is

$$
\operatorname{APV}\left(\mathrm{FP}_{0}\right)=G \ddot{a}_{[40]: \overline{10}},
$$

the APV of future benefits is

$$
\operatorname{APV}\left(\mathrm{FB}_{0}\right)=20000 A_{[40]: \overline{10}}-10000_{10} E_{[40]}
$$

and the APV of future expenses is

$$
\operatorname{APV}\left(\mathrm{FE}_{0}\right)=0.05 \times G \ddot{a}_{[40]: \overline{10}} .
$$

By the equivalence principle, we have the gross annual premium equal to

$$
G=\frac{10000\left(2 A_{[40]: \overline{10}}-{ }_{10} E_{[40]}\right)}{0.95 \ddot{a}_{[40]: \overline{10}}} .
$$

Based on the Standard Select Survival Model with $i=5 \%$, one can verify that

$$
\ddot{a}_{[40]: \overline{10]}}=\ddot{a}_{[40]}-{ }_{10} E_{[40]} \ddot{a}_{50}=18.45956-(0.6092688) 17.02453=8.087046
$$

and that

$$
A_{[40]: \overline{10}}=1-(.045 / 1.045)(8.087046)=0.6149026
$$

so that we have

$$
G=\frac{10000[2(0.6149026)-0.6092688]}{0.95(8.087046)}=807.7068
$$

(b) The policy value at each year end can be evaluated recursively. Starting with ${ }_{0} V=0$, we have

$$
{ }_{k} V=\frac{\left({ }_{k-1} V+0.95 G\right)(1+i)-20000 q_{[40]+k-1}}{1-q_{[40]+k-1}}
$$

for $k=1,2, \ldots, 9$. And for $k=10$, we have

$$
{ }_{10} V=\frac{\left({ }_{9} V+0.95 G\right)(1+i)-20000 q_{49}-10000\left(1-q_{49}\right)}{1-q_{49}}
$$

because of the endowment of 10000 if the life survives to reach age 50 . The following calculations can easily be verified:

$$
\begin{aligned}
& { }_{1} V=\frac{\left({ }_{0} V+0.95 G\right)(1.05)-10000 q_{[40]}}{1-q_{[40]}}=797.0338 \\
& { }_{2} V=\frac{\left({ }_{1} V+0.95 G\right)(1.05)-10000 q_{[40]+1}}{1-q_{[40]+1}}=1632.7117
\end{aligned}
$$

and so forth, until we have

$$
{ }_{4} V=\frac{\left({ }_{3} V+0.95 G\right)(1.05)-10000 q_{43}}{1-q_{43}}=3429.6815
$$

the required policy value just prior to the payment of the fifth premium. One can also verify, as expected, that ${ }_{10} V=0$.
(c) Let B denote the revised death benefit. We solve for B based on the following equation of value with the requested changes:

$$
{ }_{4} V+\mathrm{APV}\left(\mathrm{FP}_{4}\right)=\mathrm{APV}\left(\mathrm{FB}_{4}\right)+\mathrm{APV}\left(\mathrm{FE}_{4}\right)
$$

where

$$
\begin{aligned}
& \operatorname{APV}\left(\mathrm{FP}_{4}\right)=\frac{1}{2} G \ddot{a}_{44: \overline{6}}, \\
& \operatorname{APV}\left(\mathrm{FB}_{4}\right)=B A_{44: \overline{6} \mid}-\frac{1}{2} B_{6} E_{44},
\end{aligned}
$$

and

$$
\operatorname{APV}\left(\mathrm{FE}_{4}\right)=0.05 \times \frac{1}{2} G \ddot{a}_{44: \overline{6}}
$$

Solving for the revised death benefit, we arrive at

$$
B=\frac{{ }_{4} V+0.95 \frac{1}{2} G \ddot{a}_{44: \overline{6}}}{A_{44: \overline{6} \mid}-\frac{1}{2}{ }_{6} E_{44}}
$$

Substituting the values, we have

$$
B=\frac{3429.682+0.95 \frac{1}{2}(807.7068)(5.319477)}{0.7466916-\frac{1}{2}(0.74224)}=14565.95
$$

