Exercise 7.1

(a) Let P be the required annual benefit premium and by the equivalence principle, we have

$$
P=200000 \times \frac{A_{[41]: 3]}^{1}}{\ddot{a}_{[41]: 3]}},
$$

where

$$
\ddot{a}_{[41]: \overline{3}]}=1+v p_{[41]}+v^{2}{ }_{2} p_{[41]}=1+\frac{1}{1.06} \frac{99689}{99802}+\frac{1}{1.06^{2}} \frac{99502}{99802}=2.829644
$$

and

$$
\begin{aligned}
A_{[41]: 3]}^{1} & =A_{[41]: 31}-{ }_{3} E_{[41]}=\left(1-d \ddot{a}_{[41]: 3}\right)-v^{3}{ }_{3} p_{[41]} \\
& =\left[1-\left(1-(1.06)^{-1}\right)(2.829644)\right]-\frac{1}{1.06^{3}} \frac{99283}{99802}=0.004578162 .
\end{aligned}
$$

Thus, it follows that

$$
P=200000 \times \frac{0.004578162}{2.829644}=323.5851
$$

(b) Simply denote $K_{[41]+1}$ by K. We have

$$
L_{1}=\mathrm{PVFB}_{1}-\mathrm{PVFP}_{1}= \begin{cases}200000 v^{K+1}-P \ddot{a} \overline{K+1}, & \text { for } K<2 \\ -P \ddot{a}_{\overline{2}}, & \text { for } K \geq 2\end{cases}
$$

The following table provides details of the calculations for the expected value and standard deviation of L_{1} :

k	$\operatorname{Pr}[K=k]$	$L_{1}=\ell$	$\ell \cdot \operatorname{Pr}[K=k]$	$\ell^{2} \cdot \operatorname{Pr}[K=k]$
0	0.001875834	$200000 v-P=188355.6602$	353.3239	66550560.6
1	0.002196832	$200000 v^{2}-P(1+v)=177370.4339$	389.6531	69112934.3
≥ 2	0.995927334	$-P(1+v)=-628.8541$	-626.2930	393846.9
sum	1.00000		116.6840	136057342

Thus, we find from this table that

$$
\mathrm{E}\left[L_{1}\right]=116.6840 \text { and } \mathrm{E}\left[L_{1}^{2}\right]=136057342
$$

so that the required standard deviation is given by

$$
\mathrm{SD}\left[L_{1}\right]=\sqrt{\mathrm{E}\left[L_{1}^{2}\right]-\left(\mathrm{E}\left[L_{1}\right]\right)^{2}}=\sqrt{136057342-(116.6840)^{2}}=11663.78
$$

(c) Let B be the required sum insured so that B satisfies

$$
P \times \ddot{a}_{[41]: 3}=B \times A_{[41]: \overline{3}} .
$$

The solution is therefore

$$
\begin{aligned}
B & =P \times \frac{\ddot{a}_{[41]: 31}}{A_{[41]: 31}}=P \times \frac{\ddot{a}_{[41]: 31}}{1-(1-v) \ddot{a}_{[41]: 3}} \\
& =323.5851 \times \frac{2.829644}{1-(1-(1 / 1.06)) 2.829644}=1090.258 .
\end{aligned}
$$

(d) Following the procedure in (b), we provide the table below for the details of the calculations for the expected value and standard deviation of the corresponding L_{1} :

k	$\operatorname{Pr}[K=k]$	$L_{1}=\ell$	$\ell \cdot \operatorname{Pr}[K=k]$	$\ell^{2} \cdot \operatorname{Pr}[K=k]$
0	0.001875834	$B v-P=704.9599$	1.322388	932.2302
≥ 1	0.998124166	$B v^{2}-P(1+v)=341.4714$	340.830815	116383.9616
sum	1.00000		342.1532	117316.2

Thus, we find from this table that

$$
\mathrm{E}\left[L_{1}\right]=342.1532 \text { and } \mathrm{E}\left[L_{1}^{2}\right]=117316.2
$$

so that the required standard deviation is given by

$$
\mathrm{SD}\left[L_{1}\right]=\sqrt{\mathrm{E}\left[L_{1}^{2}\right]-\left(\mathrm{E}\left[L_{1}\right]\right)^{2}}=\sqrt{117316.2-(342.1532)^{2}}=15.72824
$$

(e) Because of the extra payment of the pure endowment in an endowment policy, this leads to a larger expected future loss, but smaller variation than that of a term insurance.

