Exercise 6.17

(a) $P=30000 a_{[60]}=30000\left(\ddot{a}_{[60]}-1\right)=30000(14.913-1)=417,390$
(b) We can indeed write the present value of profit as

$$
\text { Profit }=-L_{0}=P-30000 a \bar{K} .
$$

The event profit is positive is equivalent to the event

$$
P>30000 a_{\bar{K}}
$$

This event is equivalent to

$$
K<-\frac{1}{\delta} \log \left(1-\frac{P i}{30000}\right)=-\frac{1}{\log (1.05)} \log \left(1-\frac{(417390)(0.05)}{30000}\right)=24.38149
$$

Thus, we have

$$
\begin{aligned}
\operatorname{Pr}[\text { Profit }>0] & =\operatorname{Pr}[K<24.38149]=\operatorname{Pr}[K \leq 24] \\
& =1-{ }_{25} p_{[60]}=1-\frac{\ell_{85}}{\ell_{[60]}}=\frac{61184.88}{96568.13}=0.3664071
\end{aligned}
$$

(c) The variance of the present value of profit is

$$
\begin{aligned}
\operatorname{Var}[\text { Profit }] & =\operatorname{Var}\left[L_{0}\right]=\left(\frac{30000}{d}\right)^{2}\left[{ }^{2} A_{[60]}-\left(A_{[60]}\right)^{2}\right] \\
& =\left(\frac{30000}{0.05 / 1.05}\right)^{2}\left[0.10781-(0.28984)^{2}\right]=9447321159
\end{aligned}
$$

so that the standard deviation is

$$
\mathrm{SD}[\text { Profit }]=97197.33
$$

(d) For a 1000 such annuities, the total profit is

$$
\mathrm{TP}=-\sum_{i=0}^{1000} L_{0,1}=-\sum_{i=0}^{1000}\left(P-30000 a_{\bar{K}}\right)
$$

where its mean is

$$
\mathrm{E}[\mathrm{TP}]=-1000(P-417390)
$$

and its standard deviation is

$$
\mathrm{SD}[\mathrm{TP}]=\sqrt{1000} \times 97197.33
$$

Thus we require

$$
\operatorname{Pr}[\mathrm{TP}>0]=0.95 \Longleftrightarrow \operatorname{Pr}\left[Z>\frac{1000(P-417390)}{\sqrt{1000}(97197.33)}\right]=0.95
$$

Solving for P from

$$
\frac{1000}{\sqrt{1000}} \frac{P-417390}{97197.33}=1.645
$$

we get

$$
P=417390+1.645 \times \frac{\sqrt{1000}}{1000} 97197.33=422446.2 .
$$

