Multiple Decrement Models

Lecture: Weeks 8-9

Lecture summary

- Multiple decrement model - expressed in terms of multiple state model
- Multiple Decrement Tables (MDT)
- several causes of decrement
- probabilities of decrement
- forces of decrement
- The Associated Single Decrement Tables (ASDT)
- Uniform distribution of decrements
- in the multiple decrement context
- in the associated single decrement context
- Chapter 8 (DHW), Sections 8.8-8.12

Examples of multiple decrement models

- Multiple decrement models are extensions of standard mortality models whereby there is simultaneous operation of several causes of decrement.
- A life fails because of one of these decrements.
- Examples include:
- life insurance contract is terminated because of death/survival or withdrawal (lapse).
- an insurance contract provides coverage for disability and death, which are considered distinct claims.
- life insurance contract pays a different benefit for different causes of death (e.g. accidental death benefits are doubled).
- pension plan provides benefit for death, disability, employment termination and retirement.

Introducing notation

age x	no. of lives $\ell_{x}^{(\tau)}$	heart disease $d_{x}^{(1)}$	accidents $d_{x}^{(2)}$	other causes $d_{x}^{(3)}$
50	$4,832,555$	5,168	1,157	4,293
51	$4,821,927$	5,363	1,206	5,162
52	$4,810,206$	5,618	1,443	5,960
53	$4,797,185$	5,929	1,679	6,840
54	$4,782,727$	6,277	2,152	7,631

- Conventional notation:
- $\ell_{x}^{(\tau)}$ represents the surviving population present at exact age x.
- $d_{x}^{(j)}$ represents the number of lives exiting from the population between ages x and $x+1$ due to decrement j.
- It is also conventional to denote the total number of exits by all modes between ages x and $x+1$ by $d_{x}^{(\tau)}$ i.e.

$$
d_{x}^{(\tau)}=\sum_{j=1}^{m} d_{x}^{(j)}
$$

where m is the total number of possible decrements, and therefore, $d_{x}^{(\tau)}=\ell_{x}^{(\tau)}-\ell_{x+1}^{(\tau)}$.

Probabilities of decrement

- The probability that a life (x) will leave the group within one year as a result of decrement j :

$$
q_{x}^{(j)}=d_{x}^{(j)} / \ell_{x}^{(\tau)}
$$

- The probability that (x) will leave the group (regardless of decrement):

$$
q_{x}^{(\tau)}=d_{x}^{(\tau)} / \ell_{x}^{(\tau)}=\sum_{j=1}^{m} d_{x}^{(j)} / \ell_{x}^{(\tau)}=\sum_{j=1}^{m} q_{x}^{(j)}
$$

- The probability that (x) will remain in the group for at least one year:

$$
p_{x}^{(\tau)}=1-q_{x}^{(\tau)}=\ell_{x+1}^{(\tau)} / \ell_{x}^{(\tau)}=\left(\ell_{x}^{(\tau)}-d_{x}^{(\tau)}\right) / \ell_{x}^{(\tau)}
$$

- continued

- We also have the probability of remaining in the group after n years

$$
{ }_{n} p_{x}^{(\tau)}=\ell_{x+n}^{(\tau)} / \ell_{x}^{(\tau)}=p_{x}^{(\tau)} \cdot p_{x+1}^{(\tau)} \cdots p_{x+n-1}^{(\tau)} .
$$

and the complement

$$
{ }_{n} q_{x}^{(\tau)}=1-{ }_{n} p_{x}^{(\tau)} .
$$

- The number of failures due to decrement j over the interval $(x, x+n]$ is

$$
{ }_{n} d_{x}^{(j)}=\sum_{t=0}^{n-1} d_{x+t}^{(j)} .
$$

- These relationships should be straightforward to follow:

$$
\begin{aligned}
{ }_{n} d_{x}^{(j)} & =\ell_{x}^{(\tau)} \cdot{ }_{n} q_{x}^{(j)} \\
{ }_{n} d_{x}^{(\tau)} & =\ell_{x}^{(\tau)} \cdot{ }_{n} q_{x}^{(\tau)}
\end{aligned}
$$

Illustration of Multiple Decrement Table

Expand Multiple Decrement Table (MDT) into:

x	$\ell_{x}^{(\tau)}$	$d_{x}^{(1)}$	$d_{x}^{(2)}$	$d_{x}^{(3)}$	$q_{x}^{(1)}$	$q_{x}^{(2)}$	$q_{x}^{(3)}$	$q_{x}^{(\tau)}$	$p_{x}^{(\tau)}$
50	$4,832,555$	5,168	1,157	4,293	0.00107	0.00024	0.00089	0.00220	0.99780
51	$4,821,927$	5,363	1,206	5,162	0.00111	0.00025	0.00107	0.00243	0.99757
52	$4,810,206$	5,618	1,443	5,960	0.00117	0.00030	0.00124	0.00271	0.99729
53	$4,797,185$	5,929	1,679	6,840	0.00124	0.00035	0.00143	0.00301	0.99699
54	$4,782,727$	6,277	2,152	7,631	0.00131	0.00045	0.00160	0.00336	0.99664

Illustrative problems

Using the previously given multiple decrement table, compute and interpret the following:
(1) ${ }_{2} d_{51}^{(3)}$
(2) ${ }_{3} p_{50}^{(\tau)}$
(3) ${ }_{2} q_{53}^{(1)}$
(4) ${ }_{2 \mid 2} q_{50}^{(2)}$

Total force of decrement

- The total force of decrement at age x is defined as

$$
\mu_{x}^{(\tau)}=\lim _{h \rightarrow 0} \frac{1}{h^{h}} q_{x}^{(\tau)}=-\frac{1}{\ell_{x}^{(\tau)}} \frac{d}{d x} \ell_{x}^{(\tau)}=-\frac{d}{d x} \log \ell_{x}^{(\tau)}
$$

- Therefore, analogous to the single decrement table, we have

$$
{ }_{t} p_{x}^{(\tau)}=\exp -\left(\int_{0}^{t} \mu_{x+s}^{(\tau)} d s\right)
$$

and

$$
q_{x}^{(\tau)}=\int_{0}^{1}{ }_{s} p_{x}^{(\tau)} \mu_{x+s}^{(\tau)} d s
$$

or, more generally

$$
{ }_{t} q_{x}^{(\tau)}=\int_{0}^{t}{ }_{s} p_{x}^{(\tau)} \mu_{x+s}^{(\tau)} d s
$$

Force of a single decrement

- The force of decrement due to decrement j is defined as:

$$
\mu_{x}^{(j)}=-\frac{1}{\ell_{x}^{(\tau)}} \frac{d}{d x} \ell_{x}^{(j)}
$$

- Notice that the denominator is NOT $\ell_{x}^{(j)}$ but is rather $\ell_{x}^{(\tau)}$.
- As a consequence, we see that

$$
\mu_{x}^{(\tau)}=\sum_{j=1}^{m} \mu_{x}^{(j)}
$$

- The total force of decrement is (indeed) the sum of all the other partial forces of decrement.
- We can also show that

$$
q_{x}^{(j)}=\int_{0}^{1}{ }_{s} p_{x}^{(\tau)} \mu_{x+s}^{(j)} d s
$$

Illustrative exercise

Suppose that in a triple-decrement model, you are given constant forces of decrement, for a person now age x, as follows:

$$
\begin{aligned}
\mu_{x+t}^{(1)} & =b, \text { for } t \geq 0 \\
\mu_{x+t}^{(2)} & =b, \text { for } t \geq 0 \\
\mu_{x+t}^{(3)} & =2 b, \text { for } t \geq 0
\end{aligned}
$$

You are also given that the probability (x) will exit the group within 3 years due to decrement 1 is 0.00884 .
Compute the length of time a person now age x is expected to remain in the triple decrement table.
Answer (to be discussed in lecture): $831 / 3$ years.

The associated single-decrement table (ASDT)

- For each of the causes of decrement in an MDT, a single-decrement table can be defined showing the operation of that decrement independent of the others.
- called the associated single-decrement table (ASDT)
- Each table represents a group of lives reduced continuously by only one decrement. For example, a group subject only to death, but not to other decrements such as withdrawal.
- The associated probabilities in the ASDT are called absolute rates of decrements. For example, the absolute rate of decrement due to decrement j over the interval $(x, x+t]$ is ${ }_{t} q_{x}^{(j)}$.
- One should be able to explain intuitively why the following always hold true:

$$
{ }_{t} q_{x}^{(j)} \geq{ }_{t} q_{x}^{(j)}
$$

Link between the MDT and the ASDT

- If given the absolute rates of decrements, say $q_{x}^{\prime(1)}, q_{x}^{\prime(2)}, \ldots, q_{x}^{\prime(m)}$, how do we derive the probabilities of decrements $q_{x}^{(1)}, q_{x}^{(2)}, \ldots, q_{x}^{(m)}$ in the MDT? And vice versa.
- The fundamental link: $\mu_{x}^{(j)}=\mu_{x}^{(j)}$ for all $j=1,2, \ldots, m$.
- Therefore, it follows that

$$
{ }_{t} p_{x}^{(\tau)}={ }_{t} p_{x}^{(1)} \times{ }_{t} p_{x}^{\prime(2)} \times \cdots \times{ }_{t} p_{x}^{\prime(m)}
$$

- Furthermore, we note that

$$
\begin{aligned}
{ }_{t} q_{x}^{(j)} & =\int_{0}^{t}{ }_{s} p_{x}^{(\tau)} \cdot \mu_{x+s}^{(j)} d s \\
& =\int_{0}^{t}{ }_{s} p_{x}^{(\tau)} \cdot \mu_{x+s}^{(j)} d s=\int_{0}^{t} \frac{{ }_{s} p_{x}^{(\tau)}}{{ }_{s} p_{x}^{(j)}}{ }_{s} p_{x}^{(j)} \cdot \mu_{x+s}^{(j)} d s
\end{aligned}
$$

In the multiple decrement context

- We assume the following UDD assumption:

$$
{ }_{t} q_{x}^{(j)}=t \cdot q_{x}^{(j)}, \quad \text { for } 0 \leq t \leq 1
$$

- This leads us to the following result:

$$
{ }_{t} p_{x}^{\prime(j)}=\left(1-t \cdot q_{x}^{(\tau)}\right)^{q_{x}^{(j)} / q_{x}^{(\tau)}} .
$$

- Proof to be done in class.
- This result allows us to compute the absolute rates of decrements $q_{x}^{\prime(j)}$ given the probabilities of decrements in the multiple decrement model. In particular, when $t=1$, we have

$$
q_{x}^{\prime(j)}=1-\left(1-q_{x}^{(\tau)}\right)^{q_{x}^{(j)} / q_{x}^{(\tau)}}
$$

Illustrative example

In a double decrement table where cause d is death and cause w is withdrawal, you are given:

- both deaths and withdrawals are each uniformly distributed over each year of age in the double decrement table.
- $\ell_{x}^{(\tau)}=1000$
- $q_{x}^{(w)}=0.48$
- $d_{x}^{(d)}=0.35 d_{x}^{(w)}$

Calculate $q_{x}^{\prime(d)}$ and $q_{x}^{\prime(w)}$.
Note: One way to check your results make sense is to ensure the inequality $q_{x}^{\prime(j)} \geq q_{x}^{(j)}$ is satisfied.

In the associated single decrement context

- We assume the following UDD assumption:

$$
{ }_{t} q_{x}^{(j)}=t \cdot q_{x}^{\prime(j)}, \quad \text { for } 0 \leq t \leq 1
$$

- This implies:

$$
{ }_{t} p_{x}^{(j)} \mu_{x+t}^{\prime(j)}={ }_{t} p_{x}^{(j)} \mu_{x+t}^{(j)}=q_{x}^{\prime(j)} .
$$

- Using the previous link, one can derive

$$
\begin{aligned}
{ }_{t} q_{x}^{(j)} & =\int_{0}^{t}{ }_{s} p_{x}^{(\tau)} \mu_{x+s}^{(j)} d s \\
& =\int_{0}^{t} \prod_{i \neq j}{ }_{s} p_{x}^{\prime(i)}{ }_{s} p_{x}^{(j)} \mu_{x+s}^{(j)} d s \\
& =q_{x}^{\prime(j)} \int_{0}^{t} \prod_{i \neq j}\left(1-s \cdot q_{x}^{\prime(i)}\right) d s .
\end{aligned}
$$

- Use this integration to derive the probabilities of decrement given the absolute rates of decrements.

The case of two decrements

- When we have $m=2$, we can derive

$$
\begin{aligned}
{ }_{t} q_{x}^{(1)} & =q_{x}^{\prime(1)} \int_{0}^{t}\left(1-s \cdot q_{x}^{\prime(2)}\right) d s \\
& =q_{x}^{\prime(1)}\left(t-\frac{1}{2} t^{2} q_{x}^{\prime(2)}\right)
\end{aligned}
$$

and similarly,

$$
{ }_{t} q_{x}^{(2)}=q_{x}^{\prime(2)}\left(t-\frac{1}{2} t^{2} q_{x}^{(1)}\right)
$$

- Check the case when $t=1$.
- As an exercise, extend the derivation to the case of a triple decrement case.

Illustrative example 1

In a triple decrement table where each of the decrement in their associated single decrement tables satisfy the uniform distribution of decrement assumption, you are given:

- $q_{x}^{\prime(1)}=0.03$ and $q_{x}^{\prime(2)}=0.06$
- $\ell_{x}^{(\tau)}=1,000,000$ and $\ell_{x+1}^{(\tau)}=902,682$

Calculate $d_{x}^{(3)}$.

Illustrative example 2

In a triple decrement table, you are given that decrement (1) is death, decrement (2) is disability, and decrement (3) is withdrawal.
In addition, you have:

- $q_{60}^{\prime(1)}=0.01, q_{60}^{\prime(2)}=0.05$ and $q_{60}^{\prime(3)}=0.10$.
- Withdrawals occur only at the end of the year.
- Mortality and disability are uniformly distributed over each year of age in the associated single decrement tables.
Calculate $q_{60}^{(3)}$.

Illustrative example 1

- An insurance policy issued to (50) will pay $\$ 40,000$ upon death if death is accidental and occurs within 25 years.
- An additional benefit of $\$ 10,000$ will be paid regardless of the time or cause of death.
- The force of accidental death at all ages is 0.01 .
- The force of death for all other causes is 0.05 at all ages.
- You are given $\delta=10 \%$.
- Find the net single premium for this policy.
- [To be discussed in lecture.]

Illustrative example 2

- An employer provides his employees aged 62 the following one-year term benefits, payable at the end of the year of decrement:
- $\$ 1$ if decrement results from cause 1 ;
- $\$ 2$ if decrement results from cause 2 ; and
- $\$ 6$ if decrement results from cause 3 .
- Only three possible decrements exist.
- In their associated single-decrement tables, all three decrements follow de Moivre's Law with $\omega=65$.
- You are given $i=10 \%$.
- Find the actuarial present value at age 62 of the benefits.

Asset share calculations

Asset shares refer to the projections of the assets expected to accumulate under a single policy (or a portfolio of policies). To illustrate, consider an insurance contract that pays:

- a benefit of $b_{k}^{(d)}$ at the end of year k for deaths during the year, and
- a benefit of $b_{k}^{(w)}$ at the end of year k for withdrawals of surrenders during the year.

The policy receives an annual contract premium of G at the beginning of the year.
It pays a percentage r_{k} of the premium for expenses plus a fixed amount of expense of e_{k}. Expenses occur at the beginning of the year.

- continued

In addition ,we have

- Interest rate is an effective annual rate of i.
- The probabilities of decrements are denoted by $q_{x+k-1}^{(d)}$ and $q_{x+k-1}^{(w)}$, respectively, for deaths and withdrawals.
- The probability of staying in force through year k is therefore

$$
p_{x+k-1}^{(\tau)}=1-q_{x+k-1}^{(d)}-q_{x+k-1}^{(w)} .
$$

Denote the asset share at the end of year k by AS_{k} with an initial asset share at time 0 of AS_{0} which may or may not be zero.
For a new policy/contract, we may assume this is zero.

The recursion formula for asset shares

Beginning with $k=1$, we find

$$
\left[\mathrm{AS}_{0}+G\left(1-r_{1}\right)-e_{1}\right](1+i)=b_{1}^{(d)} q_{x}^{(d)}+b_{1}^{(w)} q_{x}^{(w)}+\mathrm{AS}_{1} \cdot p_{x}^{(\tau)}
$$

and we get

$$
\mathrm{AS}_{1}=\frac{\left[\mathrm{AS}_{0}+G\left(1-r_{1}\right)-e_{1}\right](1+i)-b_{1}^{(d)} q_{x}^{(d)}-b_{1}^{(w)} q_{x}^{(w)}}{p_{x}^{(\tau)}}
$$

This is easy to generalize as follows:

$$
\mathrm{AS}_{k}=\frac{\left[\mathrm{AS}_{k-1}+G\left(1-r_{k}\right)-e_{k}\right](1+i)-b_{k}^{(d)} q_{x+k-1}^{(d)}-b_{k}^{(w)} q_{x+k-1}^{(w)}}{p_{x+k-1}^{(\tau)}}
$$

Do not memorize - use your intuition to develop the recursive formulas.

Illustrative example

For a portfolio of fully discrete whole life insurances of $\$ 1,000$ on (30), you are given:

- the contract annual premium is $\$ 9.50$;
- renewal expenses, payable at the start of the year, are 3% of premium plus a fixed amount of $\$ 2.50$;
- $\mathrm{AS}_{20}=145$ is the asset share at the end of year 20;
- $\mathrm{CV}_{21}=100$ is the cash value payable upon withdrawal at the end of year 21;
- interest rate is $i=7.5 \%$ and the applicable decrement table is given below:

x	$q_{x}^{(d)}$	$q_{x}^{(w)}$
50	0.0062	0.0415
51	0.0065	0.0400

Calculate the asset share at the end of year 21.

