STT 456 Review Problems for Final Exams Thursday, April 29, 2015 5-8 pm, Room C-304

1. You are given:

- Mortality follows the Illustrative Life Table.
- All lives are independent.
- Deaths are uniformly distributed over each year of age.

Evaluate $q_{50:55:60}^{1}$

- 2. For a fully discrete whole life insurance of \$1 issued to (40), you are given:
 - *P* is the annual benefit premium determined according to the equivalence principle.
 - P^* is the smallest possible annual benefit premium to ensure that the probability of a positive loss-at-issue is less than 0.50.

You are given:

• Mortality follows the Illustrative Life Table.

•
$$i = 6\%$$

Calculate $\frac{P}{P^*}$.

- 3. For a special whole life insurance on (45), you are given:
 - Benefit is paid at the end of the year of death. The death benefit is \$100,000 for the first 20 years and reduces to \$50,000 thereafter.
 - The annual benefit premium of \$4,945 is payable once at the beginning of each year for the first 20 years only; no premiums are payable after 20 years.
 - The following actuarial present values:

x	A_x	\ddot{a}_x	${}_{10}E_x$
55	0.5628	4.8091	0.0758
65	0.7532	2.7147	0.0015

Calculate the benefit reserve at the end of 10 years.

4. For a double decrement table, you are given:

•
$$q_x^{\prime(1)} = 0.1$$

• $q_x^{(2)} = 0.2$

• Each decrement is uniformly distributed over each year of age in its associated single decrement table.

Calculate $q_x^{(1)}$.

5. Patients are classified as Sick (S), Critical (C), or Discharged (D). Transition occur according to the following transition matrix:

	\mathbf{S}	С	D
\mathbf{S}	(0.60)	0.20	0.20
С	$ \left(\begin{array}{c} 0.60\\ 0.10 \end{array}\right) $	0.50	0.40
D	0.00	0.00	1.00

Calculate the probability that a patient who is classified as Sick today will be classified as Sick three days later.

6. An insurance company uses the following "accidental death " model:

For a special whole life insurance policy issued to a life (x), you are given:

- A benefit of \$4 is payable at the moment of death of (x) if death is due to acidental causes; otherwise, the benefit is only \$1.
- Transition intensities are

$$\mu_{x+t}^{01} = 0.005$$
 and $\mu_{x+t}^{02} = 0.010$, for all $t > 0$.

• $\delta = 4\%$

Calculate the actuarial present value of the benefits provided by this policy.

- 7. For a Universal Life policy issued to (50) with death benefit equal to \$10,000 plus the account value, you are given:
 - Premiums are deposited at the start of each year.

- \bullet The expense charge in each year is 2.5% of premium. There are no other expense charges.
- $\bullet\,$ The cost of insurance rate each year is equal to 150% of the applicable mortality rate at the attained age.
- $i^c = i^q = 5\%$ for all years
- The account value at the end of 5 years is \$ 11,196.12.
- $q_{55} = 0.002$
- The corridor factor requirement is a minimum of 1.5 each year.

Calculate the largest amount of premium this policyholder can pay at the beginning of the sixth year.

- 8. For a Type A universal life policy issued to (50), you are given:
 - The face amount is 100,000.
 - All cash flows occur at policy anniversaries.
 - The policyholder pays an initial premium of 15,000.
 - The cost of insurance (COI) is calculated based on 120% of the mortality in the Illustrative Life Table. The interest rate for discounting the net amount at risk, i^q , is 0.04.
 - The expense charge is 1% of premium.
 - The credited interest rate for policy year 1 is 5%.
 - The corridor factor in year 1 is 2.2.
 - The surrender charge in policy year 1 is 5% of the premium paid.
 - (a) Calculate the COI in policy year 1 assuming there is no corridor factor requirement.
 - (b) Calculate the COI in policy year 1 based only on the corridor factor (as if the face amount were 0).
 - (c) Determine the COI in policy year 1.
- 9. For a Type B universal life policy of 200,000 issued to (55):
 - A premium of 5000 is paid at the start of the ninth year.
 - Expense charges are 35% of first year premiums and 10% of renewal premiums.
 - The cost of insurance in the ninth year is based on $q_{63} = 0.01$. Death benefits are assumed to be paid at the end of the year.
 - The account values at the beginning and end of the ninth year are 45,000 and 49,480, respectively.
 - The interest rate used to discount the COI is equal to the interest credited, i^c , during the ninth year.

Calculate i^c .

- 10. For two universal life policies issued to (60): Policy 1 is a Type A universal life with death benefit of 100,000 while Policy 2 is a Type B universal life with death benefit of 100,000. For each policy:
 - Death benefits are paid at the end of the month of death.
 - Account values are calculated monthly.
 - Level monthly premiums of G are payable at the beginning of each month. Past premiums may have been different from G, and may not have been the same for both policies.
 - Mortality rates for calculating COI follows the Illustrative Life Table, with the UDD assumption for fractional ages.
 - Interest is credited at a monthly effective rate of 0.004.
 - The interest rate used for accumulating and discounting in the COI calculation is a monthly effective rate of 0.004.
 - Level expense charges of E are deducted at the beginning of each month.

At the end of the 36th month, the account value for Policy 1 equals the account value for Policy 2.

Calculate the ratio of the account value for Policy 1 at the end of the 37th month to the account value of Policy 2 at the end of the 37th month.

- 11. For a universal life policy with a death benefit of 10,000 plus the account value on (60), you are given:
 - The following table of values:

Month	Monthly	Percent of	Monthly Cost	Monthly	Surrender
	Premium	Premium	of Insurance	Expense	Charge
		Charge	Rate per 1000	Charges	
12	100	15%	3.00	10	400

- The credited interest rate is $i^{(12)} = 0.048$.
- The account value at the end of month 11 is 1500.

The policy is surrendered at the end of month 12. The cash surrender value is used as a single premium to purchase a whole life annuity-due whose first 10 annual payments are guaranteed. For this annuity, you are given:

- Mortality follows the Illustrative Life Table.
- *i* = 0.06
- The annuity is priced using the equivalence principle.

Calculate the amount of the annual annuity payment.