STT 456 Review Problems for Class Test 2

Monday, April 6, 2015

1. An automobile insurance company classifies drivers according to various states:

State 1: Excellent
State 2: Good
State 3: Bad
State 4: Terrible and has to be discontinued
Assume transitions follow a time-homogeneous Markov Chain model with the following transition matrix:
1
2
3
4 $\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0.8 & 0.1 & 0.1 & 0.0 \\ 0.2 & 0.5 & 0.2 & 0.1 \\ 0.0 & 0.1 & 0.6 & 0.3 \\ 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)$

At the start of year 1, ten new drivers are insured and classified as Excellent drivers.
Calculate the probability that during the first 3 years, half of these new drivers become Terrible drivers and therefore have to be discontinued.
2. An insurance company determines its policy premiums according to a multiple state model, shown in the figure below, with states: (a) healthy non-smoker (who has never smoked before), (b) smoker, (c) smoker turned non-smoker, and (d) death.

The homogeneous transition probability matrix is given by:

$$
\begin{gathered}
\\
a \\
b \\
c \\
d
\end{gathered}\left(\begin{array}{cccc}
a & b & c & d \\
0.8 & 0.1 & 0.0 & 0.1 \\
0.0 & 0.4 & 0.2 & 0.4 \\
0.0 & 0.1 & 0.6 & 0.3 \\
0.0 & 0.0 & 0.0 & 1.0
\end{array}\right) .
$$

The company issues a two-year term policy that provides death benefit of 1 at the end of the year of death. Assume transitions occur at the end of each year and that interest rate is $i=10 \%$.

Calculate the ratio of the actuarial present value of the policy for a healthy non-smoker to that of a smoker.
3. The Illustrative Service Table is a multiple decrement table based on four decrements: (d) is death, (w) is withdrawal from employment, (i) is sickness, and (r) is retirement. Table is attached.

Using the table, calculate the ${ }_{2 \mid 2} q_{60}^{(\mathrm{r})}$ and interpret this value.
4. A two-year fully discrete term insurance policy issued to (x) pays $\$ 3,000$ if death is due to accidental causes. You are given the following table in which decrement 1 represents accidental death and decrement 2 represents death from all other causes:

x	$\ell_{x}^{(\tau)}$	$d_{x}^{(1)}$	$d_{x}^{(2)}$
50	10,000	440	360
51	9,200	1,350	1,500
52	6,350	1,728	1,965

Annual premiums are determined using the equivalence principle and a 5% annual effective interest rate.

Calculate the annual premium payable for this policy.
5. For a husband and wife with ages x and y, respectively, you are given:

- $\mu_{x+t}=0.03$ for all $t>0$
- $\mu_{y+t}=0.01$ for all $t>0$
- Their future lifetimes are independent.
- A special insurance pays $\$ 20$ at the moment of the husband's death if he dies first and $\$ 5$ if he dies after his wife.
- $\delta=5 \%$

Calculate the actuarial present value of the benefits for this special insurance.
6. A fully discrete whole life insurance of $\$ 150,000$ is issued to (50). You are given:

- The contract annual premium is $\$ 3,620$.
- Expenses are incurred at the beginning of each year: the first year expense is $\$ 1,650$ and the second year expense is $\$ 400$.
- The interest rate earned in the first year is 5.5%, and 4.5% in the second year.
- Withdrawals occur at the end of the year. If policy withdraws in the first year, there is no cash value payable. If policy withdraws in the second year, the cash value payable is $\$ 2,760$.
- The applicable decrement table is given below (with w denoting withdrawal or lapse and d denoting death):

x	$q_{x}^{(d)}$	$q_{x}^{(w)}$
50	0.0059	0.0350
51	0.0064	0.0325

Calculate the policy's asset share at the end of two years.
7. You are given:

- A husband and wife, with independent future lifetimes, are of the same age 45.
- The husband's mortality follows a constant force with $\mu_{45+t}=0.03$ for all $t \geq 0$.
- The wife's mortality follows a de Moivre's law with $\omega=100$.
- $\delta=6 \%$

Calculate $\bar{a}_{45: 45}$.
Hint: $\int t e^{-k t} d t=-\frac{1}{k} t e^{-k t}-\frac{1}{k^{2}} e^{-k t}$, for any constant $k>0$.
8. In a double decrement model, you are given:

- Decrement 1 occurs only once in the middle of each year.
- Decrement 2 is uniformly distributed in its associated single decrement table.
- $q_{x}^{\prime(1)}=0.02$
- $q_{x}^{\prime(2)}=0.04$

Calculate $\frac{q_{x}^{(1)}}{q_{x}^{(\tau)}}$.
9. For (x) and (y) with independent future lifetimes, you are given:

- $\bar{a}_{x}=10.06$
- $\bar{a}_{y}=11.95$
- $\bar{a}_{\overline{x y}}=12.59$
- $\bar{A}_{x y}{ }^{1}=0.09$
- $\delta=0.07$

Calculate $\bar{A}_{x y}^{1}$.

