#### **MATH 3630**

## Actuarial Mathematics I Class Test 2 - Section 1/2

Wednesday, 14 November 2012, 8:30-9:30 PM

Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

| Name: | EMIL | Student ID: | SUGGESTED | SOLUTIONS |
|-------|------|-------------|-----------|-----------|
|-------|------|-------------|-----------|-----------|

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

## Question No. 1:

You are given:

• An extract of a select and ultimate life table with a 2-year select period:

| [x] | $\ell_{[x]}$ | $\ell_{[x]+1}$ | $\ell_{x+2}$ | x+2 |
|-----|--------------|----------------|--------------|-----|
| 65  | 80,625       | 79,954         | 78,550       | 67  |
| 66  | 79,137       | 78,402         | 77 252       | 68  |
| 67  | 77.575       | 76,77%         | 15,573       | 69  |

• During the select period, deaths follow a constant force of mortality over each year of age.

• After the select period, deaths are unformly distributed over each year of age.

Calculate  $_{0.5|3.25}q_{[65]}$  and interpret his probability.

$$= \frac{1}{[65]} \frac{1}{[6$$

## Question No. 2:

Suppose you are given:

• 
$$q_{50} = 0.0025$$
  $\Longrightarrow$   $\rho_{50} = .9975$ 

• 
$$q_{51} = 0.0030$$
  $\Rightarrow$   $\gamma_{51} = .9970$ 

• 
$$e_{51.6} = 29.1$$

• Deaths are uniformly distributed over each year of age.

 $P_{50.6} = \frac{l_{57.6}}{l_{50.6}} = \frac{(.6l_{52} + .4l_{51})/l_{50}}{(.6l_{51} + .4l_{50})/l_{50}}$ 

= 0.9972003

$$P_{50.6} = .4P_{50.6} * .6P_{51}$$

$$= \frac{P_{50}}{{}_{16}P_{53}} * .6P_{51}$$

$$= \frac{P_{50}}{{}_{16}P_{53}} * .6P_{51}$$

$$= P_{50} \times (1-,6951) = .9975 \times (1-,6(.0030))$$

$$(1-.6957) = .9972003 sa$$

$$0.9972003 sa$$

## Question No. 3:

For a whole life insurance of \$100 on (x) with benefits payable at the moment of death, you are given:  $\delta_t = 0.05$ , for all t > 0

and

$$\mu_{x+t} = \begin{cases} 0.005, & 0 < t \le 7 \\ 0.010, & t > 7 \end{cases}$$

Calculate the actuarial present value for this insurance.

$$APV(insurance) = \frac{.005}{.055}(1-e^{-.055(7)}) + e^{-.055(7)}(\frac{.010}{.060})$$

$$= 0.1424584$$

$$= 0.1424584$$
multiply this by \$100
$$= 14.24584$$

#### Question No. 4:

Mr. Ow Sum is currently age 40. His mortality follows De Moivre's law with  $\omega=110$ . He buys a temporary life insurance policy that pays him a benefit of \$100 at the moment of his death, if he dies within the next 25 years. No benefits are made if death occurs after 25 years. You are given that i=3.5%.

Calculate the actuarial present value of his death benefit.

The actuality present value of his death benefit.

$$\begin{cases}
6 = \log(1.035) \\
40
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
6 = \log(1.035) \\
40
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
6 = \log(1.035) \\
6 = 100
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
6 = \log(1.035) \\
6 = 100
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
6 = \log(1.035) \\
6 = 100
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.035)
\end{cases}$$
The actuality present value of his death benefit.

$$\begin{cases}
7 = \log(1.035) \\
7 = \log(1.0$$

## Question No. 5:

#### You are given:

- $\bullet$  Z is the present value random variable for a 30-year pure endowment of \$100 issued to (35).
- Mortality follows the Illustrative Life Table.

Calculate 
$$Var[Z]$$
.

 $Z = V$ 
 $Z = V$ 

## Question No. 6:

A club consists of n members all age x today. The club has unanimously agreed that starting today:

- A pooled fund will be established to pay a death benefit of \$100 at the end of the year of death of each member.
- Each member will contribute a one-time amount of \$50 to this pooled fund.

You are given the following values:  $A_x = 0.455$  and  $^2A_x = 0.235$ . Assume that no member will leave the club prior to death.

Using Normal approximation, determine the smallest n so that there is at least a 0.95 probability that the pooled fund will be sufficient to cover the present value of all promised death benefits.

Total pooled fund = 50 n

Total present value = 
$$\sum_{i=1}^{n} 100 Z_{i}$$
 where  $Z_{i} = p.v.$  of a while life of  $Z_{i}$  Let this be  $Z_{i}$  peyable at  $Z_{i}$  polyable at  $Z_{i}$  property death  $Z_{i}$   $Z_$ 

## Question No. 7:

For a whole life insurance of \$1,000 issued to (65), you are given:

- Death benefits are payable at the end of the year of death.
- Mortality follows the Illustrative Life Table with the exception of the first year where you are given that  $q_{65} = 0.03$ .
- The annual effective interest rate is 2% in the first year, 3% in the second year, and 6% each year thereafter.

Calculate the actuarial present value of the death benefits.

$$= 1000 * \left[ \frac{1}{1.02} (.03) + \frac{1}{1.02} \frac{1}{1.03} (.97) \left( \frac{23.29}{1000} \right) + \frac{1}{1.02} \frac{1}{1.03} (.97) \left( 1 - \frac{23.29}{1000} \right) (.46947) \right]$$

$$= 1000 \times 0.474273$$

## Question No. 8:

(12) =  $12(1.05^{12}) = 104888949$ 

Leo is currently age 45 who purchases a special endowment insurance policy which will pay him:

- \$20,000 at the end of the month of his death, if death occurs during the next 15 years,
- \$10,000 at the end of the month of his death, if death occurs the following 5 years, and
- \$25,000 at the end of 20 years, if alive.

You are given:

- Mortality follows the Standard Ultimate Survival Model.
- i = 5%
- Deaths are uniformly distributed between integral ages.

Calculate the actuarial present value of Leo's insurance benefits. Use Std Wit Surv Model table @ 5% lok APV (Leo's benefits) 60 + 25,000 10 E45 10 E55 .60655 .59342 9400.165 401.6925 + 8998.473

Pendowned

#### Question No. 9:

For a cohort of individuals all age x consisting of 75% non-smokers (ns) and 25% smokers (sm), you are given:

| k | $q_{x+k}^{\mathrm{ns}}$ | $q_{x+k}^{\mathrm{sm}}$ |
|---|-------------------------|-------------------------|
| 0 | 0.01                    | 0.08                    |
| 1 | 0.03                    | 0.12                    |
| 2 | 0.05                    | 0.20                    |

Calculate  $A_{x:\overline{2}|}^1$  for a randomly chosen individual from this cohort. You are given: i=3%.

$$\text{ns}_{A_{\times}:\overline{2}|} = \sqrt{9} \times + \sqrt{2} \, \text{pns}_{\times} \, 9 \times 1 \\
 = \frac{1}{1.03} \, 0.01 + \frac{1}{1.03^2} \, (.99) \, (.03) = 0.03770384$$

$$\sin A_{\frac{1}{2}} = \sqrt{9x} + \sqrt{2} p_{x} = \frac{1}{1.03^{2}} (.92) (.12) = 0.1817325$$

$$A\dot{x}:\overline{z}$$
 =  $.75(0.03770384) + .25(0.1817325)$   
=  $0.073711$ 

#### Question No. 10:

For a special whole life insurance on (40), you are given:

- Death benefit is payable at the end of the year of death.
- Death benefit is \$2,000 during the first 10 years, and \$1,000 thereafter.
- Mortality follows the Illustrative Life Table.
- i = 6%

Calculate the Actuarial Present Value of this insurance.



# EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK