Michigan State University STT 455 - Actuarial Models I Fall 2014 semester Homework No. 1 due Friday, 5:00 pm, September 19, 2014

Please follow the instructions below:

ease follow the ms	didelions below.	
Return this page with your signature.		
Submit your work	to our graduate assistant, Ed	Cruz, at C505 Wells.
Write your name	and section number at the space	ces provided:
Name: Suc	GESTED SOLUTION	Section:
I certify that this is	my own work, and that I have	not copied the work of another student.
Signature:		Date:

1. (35 points) Suppose that the future lifetime of a newborn follows the survival function

$$S_0(t) = \left(\frac{105 - t}{105}\right)^{1/3}$$
, for $0 < t \le 105$.

- (a) [15 points] Explain why this is a valid survival function.
- (b) [10 points] Calculate $E(T_0) = \mathring{e}_0$
- (c) [5 points] Calculate $_{10}q_{30}$ and interpret this value.
- (d) [5 points] Calculate the probability that (40) will die between ages 65 and 75.

(a) Valid since
$$S_0(0) = 1$$
, $S_0(\infty) = S_0(105) = 0$,
and $\frac{d}{dt}S_0(t) = -\frac{1}{3}\frac{1}{105}\left(\frac{105-t}{105}\right)^{-2/3} \le 0 \Rightarrow \text{nonincreasing}$
(b) $e_0 = \int_0^{105-t} \frac{1}{105} dt = \int_0^{105} \frac{1}{105} dt = -105 \int_0^0 u^{\frac{1}{3}} du$
was substitution $u = 1 - \frac{1}{105} dt = -105 \frac{1}{105} \frac{1}{105} \frac{1}{105} = -105 \frac{1}{105} \frac{1}{1$

(c) $10930 = 1 - 10930 = 1 - \frac{50(40)}{50(30)} = 1 - (\frac{65}{75})^3 = .0465805$ This gives the probability that (30) will die within the next 10 years, or between ages 30 and 40.

$$\frac{1}{40} \frac{1}{65} \frac{1}{75} = \frac{10}{50} \left[\frac{1}{40} - \frac{1}{35} \right]^{1/3} = \frac{1}{50} \frac{1}{40} = \frac{1}{50} \frac{1}{40} = \frac{1}{50} \frac{1}{13} = \frac{1}{13$$

2. (25 points) Suppose that T_0 follows a constant force with density

$$f_0(t) = \frac{1}{100}e^{-t/100}$$
, for $t > 0$. \Longrightarrow $S_0(t) = C$

(a) [8 points] Explain why T_x , for any age x > 0, follows a constant force with similar density as

$$f_x(t) = \frac{1}{100}e^{-t/100}$$
, for $t > 0$.

- (b) [5 points] Calculate $E(T_x) = \mathring{e}_x$.
- (c) [7 points] Calculate e_x .
- (d) [5 points] Explain briefly why (b) is different from (c).

(a)
$$f_x(t) = \frac{f_0(x+t)}{S_0(x)} = \frac{1}{100} = \frac{-(x+t)/100}{e^{-x/100}} = \frac{1}{100} = \frac{-t/100}{e}, t > 0$$

(b)
$$E(T_x) = \int_0^\infty t \cdot \frac{1}{100} e^{-\frac{1}{100}} dt$$
 or $\int_0^\infty e^{-\frac{1}{100}} dt$

(c)
$$e_{x} = \sum_{k=1}^{\infty} \kappa P_{x} = \sum_{k=1}^{\infty} \frac{(-1/100)^{1c}}{(e^{-1/100})^{1c}}$$

$$= \frac{e^{-1/100}}{1 - e^{-1/100}} = \frac{99.50083}{1 - e^{-1/100}}$$

(d) Ex=E[Kx] where Kx ignores the fractional part of the year ait death therefore, we would expect Ex to be lower than Ex. and by about 1/2 year on the average, which approximately holds from in this case!

3. (40 points) You are given the force of mortality:

$$\mu_x = a + e^{bx}$$

where a and b are positive constants. In addition, you are given the following values:

$$p_0 = 0.30068$$
 $p_1 = 0.26920$ $p_2 = 0.23822$

(a) [15 points] Show that the following expression is true:

$$_{t}p_{x} = e^{-at} \exp \left[-\frac{e^{bx}}{b} (e^{bt} - 1) \right]$$

(b) [20 points] Calculate the constants a and b. HINT: Calculate the expression:

$$\frac{\log(p_2) - \log(p_1)}{\log(p_1) - \log(p_0)}$$

See also DHW, Exercise 2.11.

(c) [5 points] Calculate μ_{45} .

(a)
$$t | x = e^{-\int_{0}^{t} M_{x+s} ds} = \exp \left[-\int_{0}^{t} (a + e^{b(x+s)}) ds \right]$$

$$= \exp \left[-\int_{0}^{t} a ds + e^{bx} \int_{0}^{t} e^{bs} ds \right]$$

$$= \exp \left[-at + e^{bx} \cdot \frac{1}{b} (e^{bt} - 1) \right]$$
(b) $\frac{\log(p_{2}) - \log(p_{0})}{\log(p_{0}) - \log(p_{0})} = \frac{\left[\frac{2b}{b} + e^{b} \cdot \frac{1}{b} (e^{b} - 1) \right] - \left[\frac{a}{a} + \frac{1}{b} (e^{b} - 1) \right]}{\left[\frac{a}{b} + e^{b} \cdot \frac{1}{b} (e^{b} - 1) \right] - \left[\frac{a}{a} + \frac{1}{b} (e^{b} - 1) \right]}$

$$= \frac{e^{b} - e^{b}}{e^{b} - 1} = e^{b} \frac{(e^{b} - 1)}{(e^{b} - 1)} = e^{b} \frac{\log(13872) - \log(126740)}{(126740) - \log(126740)}$$

$$= \frac{e^{b} - e^{b}}{e^{b} - 1} = e^{b} \frac{(e^{b} - 1)}{(e^{b} - 1)} = e^{b} \frac{\log(12872) - \log(126740)}{(126740) - \log(126740)}$$

$$= \frac{1.003022}{1.003022}$$

Since
$$P_0 = e^{-a} \exp\left[-\frac{1}{b}(e^{b}-1)\right]$$

$$= e^{-a} \exp\left[-\frac{1}{1003022}(e^{-1003022})\right] = 130068$$

$$= \frac{3492837}{20068}$$

$$=$$
 $e^{-a} = \frac{.30068}{.3492837} = .8608475$

$$\Rightarrow$$
 $a = -log(.8608475) = .1498379$