Actuarial Applications of a Hierarchical Insurance Claims Model

joint work with E.W. Frees and Peng Shi, both from the University of Wisconsin - Madison

Seminar Talk Universitat de Barcelona 1 July 2008

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Other applications in the paper

E.A. Valdez University of Connecticut Storrs, Connecticut USA

The hierarchical insurance claims model

• Traditional to predict/estimate insurance claims distributions:

Cost of Claims = Frequency \times Severity

• Joint density of the aggregate loss can be decomposed as:

 $\begin{array}{lll} f(N,\mathbf{M},\mathbf{y}) &=& f(N) \times f(\mathbf{M}|N) \times f(\mathbf{y}|N,\mathbf{M}) \\ & \text{joint} &=& \text{frequency} \times \text{conditional claim-type} \end{array}$

 \times conditional severity,

where $f(N, \mathbf{M}, \mathbf{y})$ denotes the joint aggregate loss density and is equal to the product of the frequency, conditional claim-type, and conditional severity components.

- Such natural decomposition allows us to investigate/model each component separately.
- Frees and Valdez (2008), Hierarchical Insurance Claims Modeling, *Journal of the American Statistical Association*, to appear.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introductio

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Salient features of the hierarchical model

- Allows for risk rating factors to be used as explanatory variables that predict both the frequency and the multivariate severity components.
- Helps capture the long-tail nature of the claims distribution through the GB2 distribution model.
- Provides for a "two-part" distribution of losses when a claim occurs, not necessary that all possible types of losses are realized.
- Allows to capture possible dependencies of claims among the various types through a *t*-copula specification.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introductio

Purpose of paper The literature

Data and Estimation Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Risk factor rating system

- Insurers adopt "risk factor rating system" in establishing premiums for motor insurance.
- Some risk factors considered:
 - vehicle characteristics: make/brand/model, engine capacity, year of make (or age of vehicle), price/value
 - driver characteristics: age, sex, occupation, driving experience, claim history
 - other characteristics: what to be used for (private, corporate, commercial, hire), type of coverage
- The "no claims discount" (NCD) system:
 - rewards for safe driving
 - discount upon renewal of policy ranging from 0 to 50%, depending on the number of years of zero claims.
- These risk factors/characteristics help explain the heterogeneity among the individual policyholders.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

The purpose of this applications paper

- Analyze the risk profile of either a single individual policy, or a portfolio of these policies.
- Our paper focuses on three different types of actuarial applications:
 - Calculation of the predictive mean of losses for individual risk rating.
 - allows the actuary to differentiate premium rates based on policyholder characteristics.
 - quantifies the non-linear effects of coverage modifications like deductibles, policy limits, and coinsurance.
 - possible "unbundling" of contracts.
 - Evaluating the predictive distribution of portfolio of policies.
 - assists insurers in determining appropriate economic capital.
 - measures used are standard: value-at-risk (VaR) and conditional tail expectation (CTE).
 - Examining effects of several reinsurance treaties:
 - quota share versus excess-of-loss arrangements.
 - analysis of retention limits at both the policy and portfolio level.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

The literature on claims frequency/severity

- There is vast literature on modeling claims frequency and severity:
 - Klugman, Panjer and Willmot (2004); Boucher and Denuit (2006) more recent.
 - Kahane and Levy (1975) some of the earlier work.
 - Coutts (1984) claims there is more extensive literature on frequency modeling.
- Applications to motor insurance:
 - Brockman and Wright (1992) good early overview.
 - Renshaw (1994) uses GLM.
 - Most papers use grouped data, unlike the use of the level of details in our papers.
- More modern statistical approaches:
 - Pinquet (1997, 1998) cross-sectional data, policyholders over time.
 - considered 2 lines of business: claims at fault and not at fault; allowed correlation using a bivariate Poisson for frequency; severity models used were lognormal and gamma.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

The data observed

- Model is calibrated based on detailed, micro-level automobile insurance records over nine years [1993 to 2001] of a randomly selected Singapore insurer.
- Information was extracted from three databases:
 - policy file
 - claims file
 - payment file
- The data observed is a registered vehicle insured *i* over time *t* (year). For each observational unit {*it*}, the observable data consists of:
 - number of claims within a year: N_{it}
 - type of claim, available for each claim: k for k = 1, 2, 3
 - the loss amount, for each claim: y_{itk} for $t = 1, ..., T_i$, i = 1, ..., n and for type k = 1, 2, 3.
 - exposure: eit
 - vehicle characteristics: described by the vector **x**_{it}
- The data available therefore consist of

$$\{e_{it}, \mathbf{x}_{it}, N_{it}, y_{itk}, k = 1, 2, 3, t = 1, \dots, T_i, i = 1, \dots, n\}.$$

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Types of losses

- When a claim is made, possible to have one or a combination of three (3) types of losses:
 - Iosses for injury to a party other than the insured y_{ij1} "injury";
 - Iosses for damages to the insured, including injury, property damage, fire and theft y_{ij2} "own damage"; and
 - Iosses for property damage to a party other than the insured y_{ij3} - "third party property".

Table 2. Value of M, by Claim Type								
Value of M	1	2	3	4	5	6	7	
Claim by Combination Observed	(<i>y</i> ₁)	(<i>y</i> ₂)	(<i>y</i> ₃)	(y_1, y_2)	(y_1, y_3)	(y_2, y_3)	(y_1, y_2, y_3)	

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Covariates used

- Year: the calendar year 1993-2001; treated as continuous variable.
- Vehicle Type: automotive (A) or others (O).
- Vehicle Age: in years, grouped into 6 categories -

• 0, 1-2, 3-5, 6-10, 11-15, <=16.

- Vehicle Capacity: in cubic capacity.
- Gender: male (M) or female (F).
- Age: in years, grouped into 7 categories -
 - ages >=21, 22-25, 26-35, 36-45, 46-55, 56-65, <=66.
- The NCD applicable for the calendar year 0%, 10%, 20%, 30%, 40%, and 50%.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Random effects Negative Binomial count model

• Let $\lambda_{it} = e_{it} \exp \left(\mathbf{x}'_{\lambda,it} \beta_{\lambda} \right)$ be the conditional mean parameter for the {*it*} observational unit, where

- x_{λ,it} is a subset of x_{it} representing the variables needed for frequency modeling.
- Negative binomial distribution model with parameters p and r:

•
$$\Pr(N = k | r, p) = {\binom{k+r-1}{r-1}} p^r (1-p)^k.$$

• Here, $\sigma = r^{-1}$ is the dispersion parameter and

• $p = p_{it}$ is related to the mean through

$$(1 - p_{it})/p_{it} = \lambda_{it}\sigma = e_{it}\exp(\mathbf{x}'_{\lambda,it}\beta_{\lambda})\sigma$$

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

The conditional claim type component

- Certain characteristics help to describe the types of claims that arise.
- To explain this feature, we use the multinomial logit of the form

$$\Pr(M=m) = \frac{\exp(V_m)}{\sum_{s=1}^7 \exp(V_s)},$$

where $V_m = V_{it,m} = \mathbf{x}'_{M,it}\beta_{M,m}$.

- For our purposes, the covariates in x_{M,it} do not depend on the accident number *j* nor on the claim type *m*, but we do allow the parameters to depend on *m*.
- Such has been proposed in Terza and Wilson (1990).

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

The marginals for the severity component

- We are particularly interested in accommodating the long-tail nature of claims.
- We use the generalized beta of the second kind (GB2) for each claim type with density

$$f(y) = \frac{\exp(\alpha_1 z)}{y |\sigma| B(\alpha_1, \alpha_2) \left[1 + \exp(z)\right]^{\alpha_1 + \alpha_2}},$$

where $z = (\ln y - \mu)/\sigma$.

- μ is a location parameter, σ is a scale parameter and α₁ and α₂ are shape parameters.
- With four parameters, the distribution has great flexibility for fitting heavy tailed data.
- Many distributions useful for fitting long-tailed distributions can be written as special or limiting cases of the GB2 distribution; see, for example, McDonald and Xu (1995).

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

GB2 regression

- We allowed scale and shape parameters to vary by type and thus consider α_{1k}, α_{2k} and σ_k for k = 1, 2, 3.
- Despite its prominence, there are relatively few applications that use the GB2 in a regression context:
 - McDonald and Butler (1990) used the GB2 with regression covariates to examine the duration of welfare spells.
 - Beirlant et al. (1998) demonstrated the usefulness of the Burr XII distribution, a special case of the GB2 with $\alpha_1 = 1$, in regression applications.
 - Sun et al. (2006) used the GB2 in a longitudinal data context to forecast nursing home utilization.
- We parameterize the location parameter as $\mu_{ik} = \mathbf{x}'_{ik}\beta_k$:
 - Interpretability of parameters.
 - Here then $\beta_{k,j} = \partial \ln E(Y | \mathbf{x}) / \partial x_j$, meaning that we may interpret the regression coefficients as proportional changes.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Purpose of paper

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Dependencies among claim types

- We use a parametric copula (in particular, the *t* copula).
- Suppressing the {*i*} subscript, we can express the joint distribution of claims (*y*₁, *y*₂, *y*₃) as

 $F(y_1, y_2, y_3) = H(F_1(y_1), F_2(y_2), F_3(y_3)).$

- Here, the marginal distribution of y_k is given by F_k(·) and H(·) is the copula.
- Modeling the joint distribution of the simultaneous occurrence of the claim types, when an accident occurs, provides the unique feature of our work.
- Some references are: Frees and Valdez (1998), Nelsen (1999).

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Parameter estimates of the hierarchical model

- Appendix A.1 provides the fitted models for each of the components in the hierarchical model:
 - Table A.1 provides the estimates for the frequency component.
 - Table A.2 provides the estimates for the conditional claim type component.
 - Table A.4 provides the estimates for the severity component.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

The fitted frequency model

Table A.1. Fitted Negat	ive Binomi	al Model
Parameter	Estimate	Standard Error
intercept	-2.275	0.730
year	0.043	0.004
automobile	-1.635	0.082
vehicle age 0	0.273	0.739
vehicle age 1-2	0.670	0.732
vehicle age 3-5	0.482	0.732
vehicle age 6-10	0.223	0.732
vehicle age 11-15	0.084	0.772
automobile*vehicle age 0	0.613	0.167
automobile*vehicle age 1-2	0.258	0.139
automobile*vehicle age 3-5	0.386	0.138
automobile*vehicle age 6-10	0.608	0.138
automobile*vehicle age 11-15	0.569	0.265
automobile*vehicle age >>16	0.930	0.677
vehicle capacity	0.116	0.018
automobile*NCD 0	0.748	0.027
automobile*NCD 10	0.640	0.032
automobile*NCD 20	0.585	0.029
automobile*NCD 30	0.563	0.030
automobile*NCD 40	0.482	0.032
automobile*NCD 50	0.347	0.021
automobile*age ≪21	0.955	0.431
automobile*age 22-25	0.843	0.105
automobile*age 26-35	0.657	0.070
automobile*age 36-45	0.546	0.070
automobile*age 46-55	0.497	0.071
automobile*age 56-65	0.427	0.073
automobile*age ≫66	0.438	0.087
automobile*male	-0.252	0.042
automobile*female	-0.383	0.043
r	2.167	0.195

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction
Purpose of paper
The literature
Data and Estimation
Models of each component
Parameter estimates
Individual risk rating Introduction Coverage modifications Predictive means Results
Other applications in the paper

The fitted conditional claim type model

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component

Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Table A.2. Fitted Multi Logit Model											
Parameter Estimates											
Category(M)	intercept	year	vehicle age \gg 6	non-automobile	automobile*age \gg 46						
1	1.194	-0.142	0.084	0.262	0.128						
2	4.707	-0.024	-0.024	-0.153	0.082						
3	3.281	-0.036	0.252	0.716	-0.201						
4	1.052	-0.129	0.037	-0.349	0.338						
5	-1.628	0.132	0.132	-0.008	0.330						
6	3.551	-0.089	0.032	-0.259	0.203						

The fitted conditional severity model

	Table A.4. F	itted Sever	ity Model b	by Copulas			
			Types o	f Copula			
Parameter	Indepe	ndence	Normal	l Copula	t-Copula		
	Estimate	Standard	Estimate	Standard	Estimate	Standard	
		Error		Error		Error	
Third Party Injury							
σ_1	0.225	0.020	0.224	0.044	0.232	0.079	
α ₁₁	69.958	28.772	69.944	63.267	69.772	105.245	
a21	392.362	145.055	392.372	129.664	392.496	204.730	
intercept	34.269	8.144	34.094	7.883	31.915	5.606	
Own Damage							
σ_2	0.671	0.007	0.670	0.002	0.660	0.004	
a12	5.570	0.151	5.541	0.144	5.758	0.103	
a22	12.383	0.628	12.555	0.277	13.933	0.750	
intercept	1.987	0.115	2.005	0.094	2.183	0.112	
year	-0.016	0.006	-0.015	0.006	-0.013	0.006	
vehicle capacity	0.116	0.031	0.129	0.022	0.144	0.012	
vehicle age ≪5	0.107	0.034	0.106	0.031	0.107	0.003	
automobile*NCD 0-10	0.102	0.029	0.099	0.039	0.087	0.031	
automobile*age 26-55	-0.047	0.027	-0.042	0.044	-0.037	0.005	
automobile*age ≫56	0.101	0.050	0.080	0.018	0.084	0.050	
Third Party Property							
σ_3	1.320	0.068	1.309	0.066	1.349	0.068	
α ₁₃	0.677	0.088	0.615	0.080	0.617	0.079	
a23	1.383	0.253	1.528	0.271	1.324	0.217	
intercept	1.071	0.134	1.035	0.132	0.841	0.120	
vehicle age 1-10	-0.008	0.098	-0.054	0.094	-0.036	0.092	
vehicle age ≫11	-0.022	0.198	0.030	0.194	0.078	0.193	
year	0.031	0.007	0.043	0.007	0.046	0.007	
Copula							
ρ12	-	-	0.250	0.049	0.241	0.054	
ρ_{13}	-	-	0.163	0.063	0.169	0.074	
ρ_{23}		-	0.310	0.017	0.330	0.019	
ν	-	-	-	-	6.013	0.688	

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction
Purpose of paper
The literature
Data and Estimation
Models of each component
Parameter estimates
Individual risk rating
Introduction
Coverage modifications
Predictive mans
Results
Other applications in the paper

Individual risk rating

- One application considered in the paper: individual risk rating.
- The estimated model allowed us to calculate predictive means for several alternative policy designs.
 - based on the 2001 portfolio of the insurer of n = 13,739 policies.
- For alternative designs, we considered four random variables:
 - individuals losses, y_{ijk}
 - the sum of losses from a type, $S_{i,k} = y_{i,1,k} + \ldots + y_{i,N_i,k}$
 - the sum of losses from a specific event, $S_{EVENT,i,j} = y_{i,j,1} + y_{i,j,2} + y_{i,j,3}$, and
 - an overall loss per policy, $S_i = S_{i,1} + S_{i,2} + S_{i,3} = S_{EVENT,i,1} + \dots + S_{EVENT,i,N_i}.$
- These random variables are some ways of "unbundling" the coverage, quite similar to decomposing a financial contract into primitive components for risk analysis.

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction

Coverage modifications Predictive means Results

Modifications to standard coverage

- We can also analyze modifications to standard coverage such as:
 - deductibles d
 - coverage limits u
 - coinsurance percentages α
- The presence of any of these modifications alters the loss function:

$$g(y; \alpha, d, u) = \begin{cases} 0 & y < d \\ \alpha(y - d) & d \le y < u \\ \alpha(u - d) & y \ge u \end{cases}$$

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction

Coverage modifications Predictive means Besults

Calculating the predictive means

 Define μ_{ik} = E(y_{ijk}|N_i, K_i = k) from the conditional severity model with an analytic expression

$$\mu_{ik} = \exp(\mathbf{x}_{ik}^{\prime}\beta_k)\frac{B(\alpha_{1k}+\sigma_k,\alpha_{2k}-\sigma_k)}{B(\alpha_{1k},\alpha_{1k})}.$$

- In the presence of policy modifications, we approximate this using simulation (Appendix A.2).
- Basic probability calculations show that:

$$\mathrm{E}(\mathbf{y}_{ijk})=\mathrm{Pr}(\mathbf{N}_{i}=1)\mathrm{Pr}(\mathbf{K}_{i}=\mathbf{k})\mu_{ik},$$

$$\mathrm{E}(\boldsymbol{S}_{i,k}) = \mu_{ik} \mathrm{Pr}(\boldsymbol{K}_i = \boldsymbol{k}) \sum_{n=1}^{\infty} n \mathrm{Pr}(\boldsymbol{N}_i = \boldsymbol{n}),$$

$$E(S_{EVENT,i,j}) = Pr(N_i = 1) \sum_{k=1}^{3} \mu_{ik} Pr(K_i = k), \text{ and}$$
$$E(S_i) = E(S_{i,1}) + E(S_{i,2}) + E(S_{i,3}).$$

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means

Results

A case study

- To illustrate the calculations, we looked at a randomly selected policyholder from our database with characteristic:
 - 50-year old female driver who owns a Toyota Corolla manufactured in year 2000 with a 1332 cubic inch capacity.
 - for losses based on a coverage type, we chose "own damage" because the risk factors NCD and age turned out to be statistically significant for this coverage type.
- The point of this exercise is to evaluate and compare the financial significance.

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Predictive means by level of NCD and by insured's age

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Table 3. Predictive Mean by Level of NCD										
Type of Random Variable	Level of NCD									
	0 10 20 30 40 5									
Individual Loss (Own Damage)	330.67	305.07	267.86	263.44	247.15	221.76				
Sum of Losses from a Type (Own Damage)	436.09	391.53	339.33	332.11	306.18	267.63				
Sum of Losses from a Specific Event	495.63	457.25	413.68	406.85	381.70	342.48				
Overall Loss per Policy	653.63	586.85	524.05	512.90	472.86	413.31				

Table 4. Predictive Mean by Insured's Age										
Type of Random Variable	Insured's Age									
	≤ 21	22-25	26-35	36-45	46-55	56-65	\geq 66			
Individual Loss (Own Damage)	258.41	238.03	198.87	182.04	221.76	236.23	238.33			
Sum of Losses from a Type (Own Damage)	346.08	309.48	247.67	221.72	267.63	281.59	284.62			
Sum of Losses from a Specific Event	479.46	441.66	375.35	343.59	342.48	350.20	353.31			
Overall Loss per Policy	642.14	574.24	467.45	418.47	413.31	417.44	421.93			

Predictive means and confidence intervals

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating Introduction

Coverage modifications Predictive means

Results

Driven by frequency or severity?

Table A.5. Effect of NCD on Analytic Predictive Mean									
NCD	0	10	20	30	40	50			
Probability of no accident under various NCD									
No accident	0.916	0.924	0.928	0.929	0.935	0.942			
	Expecte	d losses u	inder vari	ous NCD					
Third party injury	10.669	10.669	10.669	10.669	10.669	10.669			
Own damage	2.532	2.532	2.320	2.320	2.320	2.320			
Third party property	2.765	2.765	2.765	2.765	2.765	2.765			

Table A.6.	Table A.6. Effect of Age Category on Analytic Predictive Mean										
Age	<u>≤ 21</u>	22-25	26-35	36-45	46-55	56-65	\geq 66				
Probability of no accident under various age category											
No accident	0.912	0.920	0.933	0.940	0.942	0.946	0.945				
Probability of losses type under various age category											
Third party injury	0.027	0.027	0.027	0.027	0.031	0.031	0.031				
Own damage	0.686	0.686	0.686	0.686	0.870	0.870	0.870				
Third party property	0.408	0.408	0.408	0.408	0.277	0.277	0.277				
	Expecte	d losses ι	under vari	ous age c	ategory						
Third party injury	10.669	10.669	10.669	10.669	10.669	10.669	10.669				
Own damage	2.407	2.407	2.320	2.320	2.320	2.618	2.618				
Third party property	2.765	2.765	2.765	2.765	2.765	2.765	2.765				

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Coverage modifications by level of NCD

	Table 5. Simulated Predictive Mean by Level of NCD									
		and (Coverage	Modifica	tions					
Cove	rage Mod	ification			Level of	of NCD				
Deductible	Limits	Coinsurance	0	10	20	30	40	50		
		Indivi	dual Loss	(Own Da	mage)					
0	none	1	339.78	300.78	263.28	254.40	237.10	227.57		
250	none	1	308.24	271.72	235.53	227.11	211.45	204.54		
500	none	1	280.19	246.14	211.32	203.43	188.94	184.39		
0	25,000	1	331.55	295.08	260.77	250.53	235.42	225.03		
0	50,000	1	337.00	300.00	263.28	254.36	237.10	227.27		
0	none	0.75	254.84	225.59	197.46	190.80	177.82	170.68		
0	none	0.5	169.89	150.39	131.64	127.20	118.55	113.78		
250	25,000	0.75	225.00	199.51	174.76	167.43	157.33	151.50		
500	50,000	0.75	208.05	184.02	158.49	152.54	141.70	138.07		
		Sum of Los	ses from a	Type (O	wn Damag	je)				
0	none	1	445.81	386.04	334.05	322.09	294.09	273.82		
250	none	1	409.38	352.94	302.65	291.29	265.41	248.43		
500	none	1	376.47	323.36	274.82	264.12	239.90	225.93		
0	25,000	1	434.86	378.55	330.50	316.57	291.78	270.39		
0	50,000	1	442.35	385.05	333.98	321.87	294.07	273.40		
0	none	0.75	334.36	289.53	250.54	241.56	220.56	205.37		
0	none	0.5	222.91	193.02	167.03	161.04	147.04	136.91		
250	25,000	0.75	298.82	259.09	224.32	214.33	197.33	183.75		
500	50,000	0.75	279.75	241.77	206.06	197.94	179.91	169.13		
		Sum of L	osses fro	m a Spec	ific Event					
0	none	1	512.74	444.50	407.84	390.87	376.92	350.65		
250	none	1	475.56	410.12	374.90	358.54	346.58	323.41		
500	none	1	439.84	377.11	343.33	327.64	317.47	297.37		
0	25,000	1	483.88	433.28	394.80	380.54	359.31	340.67		
0	50,000	1	494.20	442.06	401.99	388.21	367.02	348.79		
0	none	0.75	384.55	333.38	305.88	293.15	282.69	262.98		
0	none	0.5	256.37	222.25	203.92	195.44	188.46	175.32		
250	25,000	0.75	335.02	299.17	271.39	261.15	246.73	235.08		
500	50,000	0.75	315.98	281.00	253.11	243.74	230.68	221.64		
		0	verall Los	s per Poli	су					
0	none	1	672.68	572.51	516.77	493.93	466.26	421.10		
250	none	1	629.88	533.50	479.64	457.56	432.43	391.14		
500	none	1	588.55	495.85	443.87	422.63	399.85	362.37		
0	25,000	1	634.81	555.90	499.72	479.90	445.04	408.81		
0	50,000	1	649.67	568.30	509.52	490.46	454.84	418.92		
0	none	0.75	504.51	429.39	387.58	370.45	349.69	315.82		
0	none	0.5	336.34	286.26	258.39	246.96	233.13	210.55		
250	25,000	0.75	444.01	387.67	346.94	332.65	308.41	284.14		
500	50,000	0.75	424.16	368.72	327.46	314.37	291.32	270.15		

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means

Results

The effect of deductible, by NCD

Sum of Losses from a Type (Own Damage) 200 809 200 400 30 200 8

0

Sum of Losses from a Specific Event

Overall Loss per Policy

Actuarial Applications of a Hierarchical **Insurance Claims** Model

E.A. Valdez

• 0

250 500

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Coverage modifications by insured's age

	Table 6. Simulated Predictive Mean by Insured's Age								
		1	and Cove	rage Mod	lification	s			
Cove	rage Mod	ification			Level	of Insured	l's Age		
Deductible	Limits	Coinsurance	≤21	22-25	26-35	36-45	46-55	56-65	\geq 66
		In	dividual L	osses (Ov	vn Damaç	je)			
0	none	1	252.87	242.94	191.13	179.52	220.59	233.58	235.44
250	none	1	226.93	219.16	170.54	160.61	197.57	211.76	213.42
500	none	1	204.13	198.39	152.52	144.00	177.44	192.24	193.78
0	25,000	1	246.94	238.24	189.64	178.33	217.14	230.52	232.35
0	50,000	1	250.64	242.62	191.13	179.46	219.32	233.38	235.44
0	none	0.75	189.65	182.21	143.35	134.64	165.44	175.19	176.58
0	none	0.5	126.43	121.47	95.57	89.76	110.29	116.79	117.72
250	25,000	0.75	165.75	160.84	126.79	119.57	145.60	156.52	157.75
500	50,000	0.75	151.42	148.56	114.39	107.95	132.12	144.03	145.34
		Sum of	Losses fi	rom a Typ	e (Own D	amage)			
0	none	1	339.05	314.08	239.04	219.34	266.34	278.61	280.74
250	none	1	308.86	286.80	215.95	198.39	240.96	254.71	256.59
500	none	1	281.82	262.57	195.44	179.74	218.47	233.12	234.84
0	25,000	1	331.01	307.77	236.54	217.53	262.13	274.59	276.51
0	50,000	1	336.33	313.60	238.89	219.16	264.92	278.29	280.67
0	none	0.75	254.29	235.56	179.28	164.50	199.75	208.96	210.55
0	none	0.5	169.53	157.04	119.52	109.67	133.17	139.31	140.37
250	25,000	0.75	225.61	210.37	160.08	147.43	177.56	188.02	189.27
500	50,000	0.75	209.33	196.57	146.47	134.67	162.79	174.60	176.08
		Sur	n of Losse	es from a	specific E	vent			
0	none	1	480.49	452.84	360.72	336.00	339.24	341.88	355.91
250	none	1	441.68	417.13	329.75	307.68	312.02	316.15	329.97
500	none	1	404.35	382.86	300.06	280.46	285.91	291.37	305.06
0	25,000	1	461.26	434.27	356.68	329.88	326.36	335.92	341.76
0	50,000	1	471.44	444.84	360.30	333.98	331.88	341.66	351.95
0	none	0.75	360.37	339.63	270.54	252.00	254.43	256.41	266.93
0	none	0.5	240.24	226.42	180.36	168.00	169.62	170.94	177.95
250	25,000	0.75	316.83	298.92	244.28	226.17	224.35	232.65	236.87
500	50,000	0.75	296.48	281.14	224.73	208.83	208.91	218.37	225.83
			Overa	II Loss pe	r Policy				
0	none	1	641.63	585.21	450.69	410.37	410.93	408.05	423.90
250	none	1	596.61	544.40	416.07	379.07	380.98	379.93	395.52
500	none	1	553.07	505.04	382.74	348.87	352.15	352.76	368.17
0	25,000	1	616.34	561.58	444.58	402.51	394.26	399.93	406.63
0	50,000	1	630.29	575.81	449.98	407.74	401.61	407.27	419.34
0	none	0.75	481.22	438.91	338.02	307.78	308.20	306.04	317.92
0	none	0.5	320.82	292.60	225.34	205.19	205.46	204.03	211.95
250	25,000	0.75	428.49	390.58	307.48	278.41	273.23	278.86	283.69
500	50,000	0.75	406.30	371.73	286.52	259.68	257.13	263.98	272.71

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

11030113

The effect of deductible, by insured's age

Sum of Losses from a Type (Own Damage)

200

809

200

Sum of Losses from a Specific Event

Overall Loss per Policy

Actuarial Applications of a Hierarchical Insurance Claims Model

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results

Other applications done in the paper

- Evaluating the predictive distribution of a portfolio of policies.
- Examining effects of several reinsurance treaties: quota share and excess-of-loss arrangements.
- Analyzing the effects of retention limits both at the policy and portfolio level.
- We leave this out for the purpose of this talk since additional time is needed to appreciate the details.

E.A. Valdez

Introduction

Purpose of paper The literature

Data and Estimation

Models of each component Parameter estimates

Individual risk rating

Introduction Coverage modifications Predictive means Results