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Solvency status of a company is assessed at a particular period
requiring sufficient capital is held to cover expected liabilities over a
fixed time horizon, with a high degree of probability confidence.

Technically, if S is the aggregated random loss over the time horizon,
the solvency capital requirement (SCR), term used in Sandström
(2006), is

SCRS = ρ(S) − E(S),

where ρ is a risk measure defined to be a mapping from set Γ of
real-valued random variables defined on a probability space (Ω,F ,P)
to the real line R:

ρ : Γ → R : S ∈ Γ → ρ(S).

Risk measures - Artzner (1999).
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The company’s random loss S is usually the sum of several
components

S = X1 +X2 + · · · +Xn,

where the components X1, X2, . . . , Xn can be interpreted as:

• the individual losses corresponding to the losses of the several
business units within the company;

• the individual losses arising from the different policies within the
company’s portfolio of policies; or

• the individual losses arising from various categories of risks such
as the underwriting, credit, market and operational risks.
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Premium principles are clear examples of risk measures. Goovaerts
(1984).

Risk measures must be practically simple to calculate and easily
understood.

Two widely known and used risk measures are:

• Value-at-Risk (VaR): For 0 < q < 1, the q-th quantile risk
measure is defined to be

VaRq(S) = inf(s|FS(s) ≥ q).

• Tail Value-at-risk: The Tail VaR is defined to be

TVaRq(S) = E(S|S > VaRq(S)).

Both risk measures are used in several regulatory regimes as well as
by rating agencies such as Standard & Poor’s.
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To determine solvency capital, convention is:

• first identify various sources of risks;

• quantify these risks (with probabilistic models);

• determine separate amount of capital needed for each risk; and

• account for possible interaction of risks which may lead to
possible diversification effect.

Typically, diversification is interpreted so that this leads to some form
of a benefit:

SCRS ≤ SCRX1
+ · · · + SCRXn

.

Because expectation is a linear operator, this leads us to a choice of
a subadditive risk measure:

ρ(S) ≤ ρ(X1) + · · · + ρ(Xn).
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A typical insurer would classify risks according to:

• Asset default risk - potential losses arising from investment
default.

• Interest rate risk - risk of losses because of changes in the level
of interest rates causing a mismatch in asset and liability cash
flows.

• Credit risk - risk arising from inability to recover from reinsurers
or other sources of risk transfer arrangements.

• Underwriting risk - risk of losses arising from excess claims
(pure random fluctuations or prediction inaccuracies).

• Other business risk - the “catch-all-else” category including e.g.
operational losses.
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Most risk-based capital (RBC) models attempt to quantify capital
requirements according to the company’s exposure to risks.

• These are formula-based in the sense that for each sources of
“quantifiable” risk, a set of factors (or percentages) are
recommended to establish a set of Minimum Capital

Requirements.

• This approach has been recommended by the National
Association of Insurance Commissioners (NAIC) in the United
States since the 1990’s, and has been the model followed even
till today.

• The NAIC formula-based capital requirement has been similarly
adopted by rating agencies such as:

• Standard & Poor’s; and

• A.M. Best.
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The case of general insurers
Risk categories NAIC S & P A.M. Best

Asset risk charges:
Bonds
Common Stock
Real Estate

0 - 30%
20 - 43%
18 - 29%

0 - 30%
15%
10%

0 - 30%
15%
20%

Credit risk charges:
Reinsurance recoverables 10%

vary by
reinsurer’s rating

vary by
reinsurer’s rating

Written premium risk charges:
Homeowners
Other liability occurrence
CMP
Personal auto
Property

vary by line of
business with initial

industry factor
adjusted for company

experience

21 - 35%
30 - 49%
13 - 21%
9 - 14%
9 - 14%

37 - 54%
32 - 40%
29 - 37%
25 - 40%
33 - 51%

Reserve risk charges:
Homeowners
Other liability occurrence
CMP
Personal auto
Property

vary by line of
business with initial

industry factor
adjusted for company

experience

11 - 19%
14 - 23%
5 - 9%

10 - 16%
28 - 46%

19 - 39%
26 - 48%
25 - 45%
20 - 48%
26 - 47%

Source: M. Carrier, Deloitte Consulting LLP, Risk-Based Capital: So Many Models, presentation slides at the CAS
Annual Meeting 2007.
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Solvency II is a by-product of the European Commission to develop
new solvency system of regulatory requirements for insurers to
operate in the European Union.

• Framework somewhat patterned after the New Basel Capital
Accord (Basel II) on banking supervision.

• To achieve some sort of uniformity in regulations for
establishing capital.

• Based on broad “risk-based” principles in the measurement of
assets and liabilities.

• The primary aims are:

• to reduce the probability of insolvency; and

• if it does occur, to reduce the financial and economic
impact to affected policyholders.
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Solvency II framework consists of 3 pillars.

• Pillar 1 - consists of identifying the risks and quantifying the
amount of capital required.

• fair valuation of assets/liabilities;

• some prescription of factor-based methods to calculate
minimum capital; but

• use of internal models allowed, provided justified.

• Pillar 2 - prescribes requirement for effective risk management
systems and processes with steps towards effective supervisory
review and examination.

• Pillar 3 - focuses on a more discipline in the market including
fair disclosure and more transparency.

Additional details can be found in: www.fsa.gov.uk
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We are seeing some significant changes in the insurance market e.g.
reinsurance introduced, concurrent development in insurance
supervision and regulation.

• Inspired by the Solvency II framework, new capital
requirements, effective early 2008, for the insurance industry
were being established and implemented.

• New requirements were released as two guidelines (Resolutions
No. 155 and 158), developed by the National Private Insurance
Council (CNSP - Conselho Nacional de Seguros Privados), a
governing body responsible for insurance policies in Brazil, and
its executive body, the Superintendent of Private Insurance
(SUSEP).
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Old and new requirements:

• Old requirement: determined according to the company’s mix
of product lines and according to the geographical regions in
which the company is authorized to conduct business.

• New requirement: the minimum capital to be based on the sum
of a “base capital” and an “additional capital”, which have to
be continually maintained to be allowed to continue operating
as an insurer.
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Resolution 155:

• Establishes definition of the “base capital” (a fixed amount
according to region), and the “additional capital” (a variable
component reflecting the risks categorized according to credit,
market, underwriting, legal and operational risks).

• Gives further details of the required action should there be
capital inadequacy.

Resolution 158:

• Inspired by Solvency II, permits insurers to develop own internal
capital models which could allow holding lower capital.

• Must demonstrate compliance; required to submit balance sheet
statements to SUSEP every 6 months and depending on degree
of non-compliance, penalties imposed.

Additional details can be found in Sommer (May 2007) and Sommer
(March 2008).
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Let X = (X1, . . . , Xn)′ be an n-dimensional random vector.

Joint distribution. Its joint distribution function is

F (x) = F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn).

Marginals. The marginals of the individual components are

Fi(xi) = P(Xi ≤ xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞).

Densities. If the density exist, it can be derived from

f(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn

and is related to the joint distribution by

F (x1, . . . , xn) =

∫ x1

−∞

· · ·
∫ xn

−∞

f(u1, . . . , un)du1 · · · dun.
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For a random vector X, the covariance matrix is defined by

Cov(X) = E((X − E(X))(X − E(X))′),

assuming they exist.
Often, we write Σ to denote this covariance matrix with the (i, j)th
element expressed as

σij = Cov(Xi, Xj) = E(XiXj) − E(Xi)E(Xj).

The correlation matrix, denote it by R, has (i, j)th element equal to

ρij =
σij√
σiiσjj

,

the ordinary pairwise linear correlation of Xi and Xj . If we write
∆ = diag(

√
σ11, . . . ,

√
σnn), then we have R = ∆−1Σ∆−1.
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Given a matrix A ∈ R
m×n and vector a ∈ R

m, covariance is

Cov(AX + a) = ACov(X)A′.

For linear combinations of the components of X, we therefore find
that

Var(a′
X) = a

′Σa,

for any vector a ∈ R
n. It follows that this variance is usually

non-negative because covariance matrices must be positive
semi-definite.
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The components of X are mutually independent if and only if

F (x) =
n

∏

k=1

Fk(xk), for all x ∈ R
n,

or, if the densities exist, if and only if

f(x) =

n
∏

k=1

fk(xk), for all x ∈ R
n.

Correlation and independence. Independence implies zero
covariance and hence zero correlation, but the converse is not
necessarily true.

However, the converse is true for the case of multivariate normal
distributions.
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X ∼ Nn(µ,Σ) if its joint density is

f(x) = (2π)−n/2|Σ|−1/2 exp

[

−1

2
(x − µ)′Σ−1(x − µ)

]

.

Mean vector is µ and covariance matrix is Σ.

The components of X are mutually independent if and only if the
covariance is a diagonal matrix.

The standard multivariate normal is the case where X ∼ Nn(0, I)
where I is an n× n identity matrix.

We often write the vector Z to denote standard multivariate normal.
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Some believe that there are deficiencies of the normal for multivariate
modeling in finance/insurance:

• The tails of the margins may be too thin, and hence fail to
generate some extreme values.

• As a consequence, in the multivariate sense, it fails to capture
phenomenon of joint extreme movements. Simultaneous large
values may be relatively infrequent - generally believed to lack
tail dependence.

• Too much symmetry - lack of presence of skewness. Some
financial/insurance data exhibits long tails.
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X ∼ tn(ν, µ,Σ) if its joint density is

f(x) =
Γ((ν + n)/2)

(πν)n/2Γ(ν/2)|Σ|1/2

[

1 +
1

ν
(x − µ)′Σ−1(x − µ)

]−(ν+n)/2

.

Mean vector is µ and covariance is Cov(X) = ν
ν−2Σ.

In the case where Σ is diagonal, then the components of X are
uncorrelated; however, they are not independent.

The multivariate t has heavier tails than the multivariate normal.

If Y ∼ Nn(0,Σ) and if νS2/σ2 ∼ χ2
ν distribution, then the

multivariate t random variable has the representation

X = S−1
Y + µ.

As ν → ∞, the multivariate t approaches the multivariate normal.
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A function F : R
n → [0, 1] is a multivariate distribution function if it

satisfies:

• right-continuity;

• limxi→−∞ F (x1, . . . , xn) = 0 for i = 1, . . . , n;

• limxi→∞,∀i F (x1, . . . , xn) = 1; and

• rectangle inequality holds: for all (a1, . . . , an) and (b1, . . . , bn)
with ai ≤ bi for i = 1, . . . , n, we have

2
∑

i1=1

· · ·
2

∑

in=1

(−1)i1+···+inF (x1i1 , . . . , xnin) ≥ 0,

where xi1 = ai and xi2 = bi.
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A copula C : [0, 1]n → [0, 1] is a multivariate distribution function
whose univariate marginals are Uniform(0, 1).

Properties of a copula:

• C(u1, . . . , un) must be increasing in each component ui.

• C(u1, . . . , uk−1, 0, uk+1, . . . , un) = 0.

• C(1, . . . , 1, uk, 1, . . . , 1) = uk.

• the rectangle inequality leads us to

2
∑

i1=1

· · ·
2

∑

in=1

(−1)i1+···+inC(u1i1 , . . . , unin) ≥ 0

for all ui ∈ [0, 1], (a1, . . . , an) and (b1, . . . , bn) with ai ≤ bi,
and ui1 = ai and ui2 = bi.
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Sklar (1959): There exists a copula function C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

where Fi is the marginal for Xi, i = 1, . . . , n.

Equivalently, we write

P(X1 ≤ x1, . . . , Xn ≤ xn) = C(P(X1 ≤ x1), . . . ,P(Xn ≤ xn)).

C need not be unique, but it is unique for continuous marginals.
Else, C is uniquely determined on RanF1 × . . .× RanFn.

In the continuous case, this unique copula can be expressed as

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F

−1
n (un)),

where F−1
i are the respective quantile functions.
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Independence copula: C(u1, . . . , un) = u1 · · ·un.

The Fréchet bounds: Any copula function satisfies the following
bounds:

LF (u1, . . . , un) ≤ C(u1, . . . , un) ≤ UF (u1, . . . , un),

where

Fréchet lower bound: LF = max(
∑n

i=1 ui − (n− 1), 0), and

Fréchet upper bound: UF = min(u1, . . . , un).

The Fréchet upper bound (comonotonic copula) satisfies definition of
a copula, but the Fréchet lower bound is a copula only in the case of
n = 2 dimension (countermonotonic copula).
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Define the comonotonic copula CU = min(u1, . . . , un).

It can be shown that if F1, . . . , Fn are univariate marginal distribution
functions, then CU is the distribution function of the random vector

(F−1
1 (U), . . . , F−1

n (U)),

where F−1
i are the usual quantile functions.

Comonotonicity is indeed a very strong positive dependency structure
- results in very strong positive comovements. The higher the value of
one component Xi, the higher the value of any other component Xj .

Studied by: Dhaene, et al. (2002a, 2002b). Very useful for finding
bounds of functions of components of a random vector.



In
te

rn
a
ti

o
n
a
l
W

o
rk

sh
o
p

o
n

S
o
lv

en
cy

-
S
ã
o

P
a
u
lo Invariance property

Valdez, E.A. – 26 / 46

Suppose random vector X has copula C and suppose T1, . . . , Tn are
non-decreasing continuous functions of X1, . . . , Xn , respectively.

The random vector defined by (T1(X1), . . . , Tn(Xn)) has the same
copula C.

The usefulness of this property can be illustrated in many ways. If
you have a copula describing joint distribution of insurance losses of
various types, and you decide the quantity of interest is a
transformation (e.g. logarithm) of these losses, then the multivariate
distribution structure does not change.

Hence, the dependency structure is preserved. However, the
marginals do change.
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Normal copula:

Cn
R(u) = ΦR(Φ−1(u1), . . . ,Φ

−1(un)),

where Φ is the cdf of standard univariate normal, ΦR is the joint cdf
of X ∼ Nn(0,R) with R, the correlation matrix.

The case where R = In results in independence, and R = Jn gives
comonotonicity.

t copula:
Cn

ν,R(u) = tν,R(t−1
ν (u1), . . . , t

−1
ν (un)),

where tν is the cdf of standard univariate t, tν,R is the joint cdf of
X ∼ tn(ν,0,R) with R, the correlation matrix.

The case where R = Jn gives comonotonicity, but R = In does not
result in independence.
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Although implicit in forms, these copulas are easy to simulate from.

Simulating from normal copula:

1. simulate X ∼ Nn(0,R);

2. set U = (Φ(X1), . . . ,Φ(Xn))′.

Simulating from t copula:

1. simulate X ∼ tn(ν,0,R);

2. set U = (tν(X1), . . . , tν(Xn))′.
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C is an Archimedean if it has the form

C(u1, . . . , un) = ψ−1(ψ(u1) + · · · + ψ(un)),

for some function ψ (called the generator) satisfying:

• ψ(1) = 0;

• ψ is decreasing; and

• ψ is convex.

To ensure you get a legitimate copula for higher dimensions, ψ−1

must be completely monotonic, i.e. its derivatives alternate in signs.

An important source of Archimedean generators is the inverses of the
Laplace transforms of distribution functions.

Feller (1971): A function ϕ on [0,∞] is the Laplace transform of a
cdf F if and only if ϕ is completely monotonic with ϕ(0) = 1.
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Family Generator ψ(t) Range of α C(u)

Independence − log(t) na
n
∏

i=1
ui

Clayton t−α − 1 α > 0

[

n
∑

i=1
u−α

i − n+ 1

]−1/α

Gumbel-Hougaard (− log t)α α ≥ 1 exp

{

−
[

n
∑

i=1
(− log ui)

α

]1/α
}

Frank − log

(

e−αt − 1

e−α − 1

)

α > 0 − 1

α
log









1 +

n
∏

i=1
(e−αui − 1)

(e−α − 1)n−1








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Marginals: Gamma(5,1), ρ = 0.75, and ν = 3
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In demonstrating how to calibrate copula models, we consider
empirical data with:

• Danish fire data provided by Mette Rytgaard.

• The data consists of 2,167 fire losses in Denmark for the period
1980-1990.

• The loss amounts vary according to:

• buildings X1

• contents X2

• loss of profits X3

• This same dataset has been used by Blum, Dias and Embrechts
(2002), “The ART of Dependence Modelling”, appearing in
Alternative Risk Strategies, ed. M. Lane.
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building contents loss of profit total

1.09809663 0.58565150 0.00000000 1.683748
1.75695461 0.33674960 0.00000000 2.093704
1.73258126 0.00000000 0.00000000 1.732581
0.00000000 1.30537600 0.47437775 1.779754
1.24450952 3.36749600 0.00000000 4.612006
4.45203953 4.27323400 0.00000000 8.725274
2.49487555 3.54319200 1.86090776 7.898975
0.77568960 0.99311710 0.43923865 2.208045
0.81259151 0.67349930 0.00000000 1.486091
2.37157394 0.16837480 0.25622255 2.796171
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type of loss
building contents loss of profit total

zero counts 177 488 1,551
(non-zero) count 1,990 1,679 616 2,167
mean 1,986,679 1,701,778 851,799 3,385,088
median 1,320,132 575,699 266,193 1,778,154
std dev 4,514,998 5,347,536 2,947,029 8,507,451
minimum 23,191 825 4,084 1,000,000
maximum 152,413,209 132,013,200 61,932,650 263,250,324
25th percentile 966,175 290,004 100,111 1,321,118
75th percentile 1,978,604 1,446,480 679,293 2,967,023



In
te

rn
a
ti

o
n
a
l
W

o
rk

sh
o
p

o
n

S
o
lv

en
cy

-
S
ã
o

P
a
u
lo Marginal density plots

Valdez, E.A. – 36 / 46

5 10 15 20

0.0
0.2

0.4
0.6

0.8

Densities of logarithm of losses

log of loss

De
nsi

ty

building

contents

profits



In
te

rn
a
ti

o
n
a
l
W

o
rk

sh
o
p

o
n

S
o
lv

en
cy

-
S
ã
o

P
a
u
lo Q-Q plots of the logarithms

Valdez, E.A. – 37 / 46

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

building

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

−3 −2 −1 0 1 2 3

−6
−4

−2
0

2
4

contents

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

contents

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s



In
te

rn
a
ti

o
n
a
l
W

o
rk

sh
o
p

o
n

S
o
lv

en
cy

-
S
ã
o

P
a
u
lo Fitting the marginals

Valdez, E.A. – 38 / 46

To accomodate the large number of zeroes in each type of loss, we
use a mixture model of the form:

fk(x) =

{

pk, for x = 0
(1 − pk)fLN,k(x), for x > 0

,

where k = 1, 2, 3 refers to the building, contents, and profits,
respectively.

LN refers to the log-normal distribution with parameters µ and σ.

It is also easy to prove that the marginal CDF for the mixture is:

Fk(x) = pk + (1 − pk)FLN,k(x), for k = 1, 2, 3.
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Estimation used: Inference for Margins (IFM) method

Parameter Building (X1) Contents (X2) Profits (X3)

p 0.0817 0.2253 0.7156
(s.e.) (0.0059) (0.0090) (0.0097)
µ 0.3384 -0.4257 -1.2802

(s.e.) (0.0167) (0.0310) (0.0570)
σ 0.7438 1.2705 1.4153

(s.e.) (0.0118) (0.0219) (0.0403)
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Parameter Clayton copula Normal copula t-copula

α 0.0162
(s.e.) (0.0128)

ρBC 0.3218 0.3194
(s.e.) (0.0056) (0.0017)
ρBP 0.2862 0.3005
(s.e.) (0.0022) (0.0059)
ρCP 0.2825 0.2864
(s.e.) (0.0089) (0.0073)
ν 2.9974

(s.e.) (0.1736)

log-likelihood -8,291.897 -8,188.390 -8,235.523
numb. of parms. 1 3 4

AIC 16,585.79 16,382.78 16,479.05
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• Standard methodology - based on the following assumptions:

(i) X = (X1, . . . , Xn)′ follows a multivariate normal with
mean µ = (µ1, . . . , µn)′ and covariance Σ = (σij); and

(ii) The risk measure used is the quantile risk measure or VaR.

• Extension to the standard methodology - based on the following
assumptions:

(i) Each Xi belongs to a location-scale family of distributions:

Xi = µi + σiZ, for i = 1, . . . , n.

(ii) S also belongs to same location-scale family:
S = µS + σSZ; and

(iii) Risk measure used is conditional tail expectation or TVaR.

• Numerical simulations with copulas.
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S has a normal distribution with mean E(S) =
∑n

i=1 µi and variance
Var(S) = 1

′
Σ1, where 1 = (1, 1, . . . , 1)′.

Thus, we have
SCRS = VaRq(S) − E(S),

where, using the property of normal distribution, we have

VaRq(S) = Φ−1(q)σS + E(S),

and hence,

SCRS = Φ−1(q)σS = Φ−1(q)
√

Var(S) = Φ−1(q)
√

1′Σ1.

Φ−1 denotes the quantile function of a standard normal and σS is the
standard deviation of S.
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Note that

1
′
Σ1 =

n
∑

i=1

n
∑

j=1

Cov(Xi, Xj) =
n

∑

i=1

n
∑

j=1

σiσjρij

=
1

[Φ−1(q)]2

n
∑

i=1

n
∑

j=1

SCRiSCRjρij =
1

[Φ−1(q)]2
SCR′

Σ SCR,

where
SCR = (SCRX1

, . . . ,SCRXn
)′,

the vector of stand-alone solvency capitals SCRXi
for each risk i.

This proof has appeared in Dhaene (2005). It immediately follows
that

SCRS =
√

SCR′
Σ SCR.

The stand-alone capitals can indeed be written as

SCRXi
= Φ−1(q)σXi

= Φ−1(q)
√

Var(Xi).
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For stand-alone losses Xi, we have

TVaRq(Xi) = E(Xi|Xi > VaRq(Xi))

= µi + σiE(Z|Z > VaRq(Z))

= µi + σiTVaRq(Z).

Similarly, we have TVaRq(S) = µS + σSTVaRq(Z).

From here, we find that

1
′
Σ1 =

1

[TVaRq(Z)]2

n
∑

i=1

n
∑

j=1

(TVaRq(Xi) − µi)ρij(TVaRq(Xj) − µj)

=
1

[TVaRq(Z)]2
(TVaRq(X) − µ)′Σ(TVaRq(X) − µ).

where TVaRq(X) = (TVaRq(X1), . . . ,TVaRq(Xn))′, the vector of
stand-alone solvency capitals TVaRq(Xi) for each risk i.
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It follows that

SCRS = µS +
√

(TVaRq(X) − µ)′ Σ (TVaRq(X) − µ).

A similar form to the standard methodology can be found in this case:

SCRS = µS +
√

SCR′
Σ SCR.

Indeed, Dhaene (2005) provides a further extension to the class of
distortion risk measures for which the Tail VaR is a special case.

This class of risk measures was introduced by Wang (1996).
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