Longitudinal analysis of mortality risk factors for actuarial valuation

Ushani Dias and Emiliano A. Valdez

Statistics Colloquium, Northern Illinois University, 26-27 April 2012

Outline

Introduction

Global trends
Literature
Motivation

Data

HRS survey
Model construction
Description
Survival models
Model estimates
Comparison
Additional work

Introduction

- There is no denying that the assumption of mortality plays a key role in the actuarial valuation of life insurance and annuity products.
- Within the last century alone, significant mortality improvement across several countries in the world have been due to:
- significant medical progress
- socio-demographic changes
- improvements in lifestyles
- the absence (or lack) of major pandemic crisis
- As a result, longevity poses a high risk to the insurance industry, something also that many involved in the industry have less understanding of its impact (economic or otherwise).

Global trends

Source: World Health Organization, 2012.

Literature - relevant publications

- Actuarial science: Kwon, H.-S. and B. Jones, 2005. "The Impact of the determinants of mortality on life insurance and annuities". Insurance: Mathematics and Economics, 38(2).
- Actuarial science: Fong, J. HY, 2010. "Beyond Age and Sex: Enhancing Annuity Pricing". http://www.pensionresearchcouncil.org/publications/document.php
- Medicine: Paula, M.L. et al., 2010. "Socioeconomic and behavioral risk factors for mortality in a national 19-year prospective study of U.S. adults". Social Science \& Medicine, 70.
- Gerontology: Eileen, M. C. et al., 2010. "Mortality and morbidity trends: is there compression of morbidity?". The Journal of Gerontology, 66B.

Literature - continued

Useful books on modeling framework:

- Thomas R. Fleming, et al. (2005): Counting Processes and Survival Analysis
- Rogers R.G. et al. (2011): International Handbook for Adult Mortality

Relevant work

- International Actuarial Association (IAA) Mortality working Group
- "Global mortality improvement experience and projection techniques" by Purushotham et al. (2011), SOA sponsored research project.
- A survey work by Brown et al. (2003) with 45 recent papers provides some key factors that affect mortality after retirement.

Motivation

- In addition to age and sex, various studies have discovered significant effects of
- demographic risk factors
- health indicators
- lifestyle factors
- financial factors
on the mortality of both older and younger adults.
- We envision that the intention of our work is to:
- identify (additional) significant risk factors affecting longevity
- explore the association of significant covariates with survival distributions
- understand how the various risk factors may possibly affect the values of annuity

Health And Retirement Study (HRS) Data

- HRS is a collaborative work between the University of Michigan, the National Institute of Aging, and the Social Security Administration.
- HRS is a prospective national longitudinal study about the health, retirement, and economic status of (some) Americans over the age 50 years.
- The study contains a rich amount of information that will allow us to explore both the cross-sectional and the longitudinal effects of various risk factors on mortality from 1992 to 2006.
- Awareness about the HRS data within the scientific community shows a rapid growth of its use in research.

Motivation for model construction

- Data-driven. Our observable is best illustrated by the following figure:

- This diagram provides an illustration of the nature of the HRS data.

Data description

- The HRS data is a survey from the general population.
- The data set contains 7,607 non-institutionalized financially responsible adults living in the contiguous United States in 1992.
- follow-up studies were done every 2 years until 2006
- To better represent the U.S. population, sampling weights are used.
- Mortality data can be obtained from the National Death Index through 2006.
- Statistical analyses were conducted using SAS 9.3.

Demographic variables

Health variables

Categorical Health Variables	Description		Proportions
HBP	Reports high blood pressure:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{aligned} & 51.35 \% \\ & 48.65 \% \end{aligned}$
DIAB	Reports diabetes :	$\begin{aligned} \mathrm{No} & =0 \\ \mathrm{Yes} & =1 \end{aligned}$	$\begin{aligned} & 84.33 \% \\ & 15.67 \% \end{aligned}$
CANCR	Reports cancer:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{gathered} 90.67 \% \\ 9.33 \% \end{gathered}$
LUNG	Reports lung disease:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{gathered} 90.30 \% \\ 9.70 \% \end{gathered}$
HEART	Reports heart problem:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{aligned} & 82.42 \% \\ & 17.58 \% \end{aligned}$
STROK	Reports stoke:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{gathered} 95.27 \% \\ 4.73 \% \end{gathered}$
PSYCH	Reports psychiatric problems :	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{aligned} & 85.34 \% \\ & 14.66 \% \end{aligned}$
ARTHR	Reports arthritis problems:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{aligned} & 47.70 \% \\ & 52.30 \% \end{aligned}$

Lifestyle and Financial variables

Categorical Lifestyle Variables	Description		Proportions	
SMOKEV	Smoking Status	Non-smoker $=0$ Former smoker $=1$ Current smoker $=2$	$\begin{aligned} & 35.80 \% \\ & 43.44 \% \\ & 20.75 \% \end{aligned}$	
DRINKR	Alcohol Drinking Status	$\begin{array}{r} <1 \text { drink per day }=0 \\ 1-2 \text { drinks per day }=1 \\ \geq 3 \text { drinks per day }=2 \end{array}$	$\begin{gathered} 50.40 \% \\ 34.63 \% \\ 5.97 \% \end{gathered}$	
VIGACT	Physical activity or Exercise 3+ times a week:	$\begin{aligned} & \mathrm{No}=0 \\ & \mathrm{Yes}=1 \end{aligned}$	$\begin{aligned} & 64.70 \% \\ & 35.30 \% \end{aligned}$	
Continuous Lifestyle Variable		Minimum	Mean	Maximum
BMI	Body Mass Index ($\mathrm{kg} / \mathrm{m}^{2}$)	10.80	27.75	102.70
Categorical Financial Variable	Description		Proportions	
JPHYS	Current job requires physical effort:	All the time $=1$ Most of the time $=2$ Some of the time=3 None=4 Does not apply=5	$\begin{aligned} & 9.86 \% \\ & 8.78 \% \\ & 15.35 \% \\ & 18.83 \% \\ & 47.18 \% \end{aligned}$	
Continuous Financial Variables		Minimum	Mean	Maximum
HTOTW HITOT	Total Wealth(Excluding IRAs) Total household income	$\begin{array}{r} -4,733,000 \\ 0 \end{array}$	$\begin{array}{r} 252,167 \\ 51,619 \end{array}$	$\begin{array}{r} 85,960,000 \\ 7,395,294 \end{array}$

Survival models

- Analyzes the time to event data.
- Applications in many different fields (e.g. Sociology, Engineering, Economics, Actuarial).
- Can be performed with retrospective or prospective data.
- Censoring and time-dependent covariates are two common features.
- Four general types of models:
- Parametric (e.g. Gompertz, Weibull)
- Nonparametric (e.g. Life table)
- Semiparametric (e.g. Cox)
- Discrete (e.g. Logit, Probit)
- For semiparametric models, martingale methods can be used.

Censored data regression models

Consider the right-censored failure time data for independent observations on (X, δ, \mathbf{Z}) where

- $X=\min (T, U), T$ and U are failure and censoring times, respectively;
- $\delta=I_{[T \leq U]}$ indicator for failure; and
- \mathbf{Z} is a p-dimensional column vector of covariates.

The information of

$$
(X, \delta) \Rightarrow N(t)=I_{[X \leq t, \delta=1]} \text { and } Y(t)=I_{[X \geq t]} .
$$

This setting leads to two possible approaches to censored regression models:

- traditional approach (Cox, 1972)
- counting process approach (Andersen et al.,1982)

The counting process approach

Consider the stochastic basis with the right continuous filtration $\left\{F_{t}: t \geqslant 0\right\}$ defined as

$$
F_{t}=\sigma\{\boldsymbol{Z}, N(u), Y(u+): 0 \leq u \leq t\}
$$

- According to the Doob-Meyer Decomposition, for the increasing process N, there is a unique predictable process A with respect to F_{t} such that $N-A$ is a martingale.
- When A^{\prime} exists, it is called the intensity process for N.
- Aalen (1978) shows that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \operatorname{Pr}\left[N(t+h)-N(t)=1 \mid F_{t}\right]=\lambda(t+)
$$

where

$$
\lambda_{i}(t)=Y_{i}(t) \lambda_{0}(t) \exp \left[\beta_{0} \mathbf{Z}_{\mathbf{i}}(\mathbf{t})\right]
$$

The Andersen-Gill model

N has random intensity process λ such that

$$
\lambda_{i}(t)=Y_{i}(t) \lambda_{0}(t) \exp \left[\beta_{0} \mathbf{Z}_{\mathbf{i}}(\mathbf{t})\right]=Y_{i}(t) \lambda\left\{t \mid \mathbf{Z}_{\mathbf{i}}(\mathbf{t})\right\}
$$

where

- $Y_{i}(t)$ is a predictable process taking values $\{0,1\}$,
- λ_{0} is a fixed underlying hazard function,
- β_{0} is a fixed column vector of p coefficients, and
- $\mathbf{Z}_{\mathbf{i}}$ is a column vector of p covariates.

Indeed, the Andersen-Gill model is a superset of the (familiar) Cox model.

Partial likelihood estimation technique

- To estimate β_{0}, partial (Cox's) likelihood techniques were employed. (Cox, 1975)
- Partial likelihood for n independent triplets $\left(N_{i}, Y_{i}, \mathbf{Z}_{\mathbf{i}}\right)$ where ties in observed failure times are allowed and for $i=1,2, \ldots, n$, we have

$$
L(\beta, t)=\prod_{i=1}^{n} \prod_{s \geq 0}\left\{\frac{Y_{i}(s) \exp \left[\beta^{\prime} \mathbf{Z}_{\mathbf{i}}(\mathbf{s})\right]}{\sum_{j=1}^{n} Y_{i}(s) \exp \left[\beta^{\prime} \mathbf{Z}_{\mathbf{i}}(\mathbf{s})\right]}\right\}^{\Delta N_{i}(s)}
$$

where

$$
\Delta N_{i}(s)=1, \text { if } N_{i}(s)-N_{i}(s-)=1
$$

and otherwise, $\Delta N_{i}(s)=0$.

- Andersen et al. (1982) and Fleming et al. (2005)

Model estimates - based on the likelihood technique

Variable	Parameter Estimate	Standard Error	Pr $>$ ChiSq	Hazard Ratio
RAGENDER- Male	0.56318	0.08106	$<.0001$	1.756
RMARRY- Single	0.20008	0.08112	0.0136	1.222
AGE	0.04323	0.00744	$<.0001$	1.044
AGE-Unit 5				1.241
DIAB- Yes	0.75472	0.07885	$<.0001$	2.127
LUNG- Yes	0.46491	0.08532	$<.0001$	1.592
HEART- Yes	0.40177	0.07715	$<.0001$	1.494
STROK- Yes	0.58143	0.09791	$<.0001$	1.789
CANR- Yes	0.95014	0.08067	$<.0001$	2.586
VIGACT- No	0.82516	0.09596	$<.0001$	2.282
DRINKR- Mod	-0.36612	0.09005	$<.0001$	0.693
DRINKR- Heavy	-0.31438	0.14643	0.0318	0.730
SMOKEV- Former	0.41537	0.09304	$<.0001$	1.515
SMOKEV- Current	0.66674	0.10522	$<.0001$	1.948
BMI	-0.05391	0.00732	$<.0001$	0.948
BMI-Unit 5				0.764
JPHYS-Most	-0.10610	0.23708	0.6545	0.899
JPHYS-Some	-0.14962	0.20673	0.4692	0.861
JPHYS-None	-0.30787	0.20670	0.1364	0.735
JPHYS-NA	0.53836	0.17051	0.0016	1.713
HITOT	$-3.7916 \mathrm{E}-6$	$1.10751 \mathrm{E}-6$	0.0006	1.000
HITOT-Unit 50000				0.827

Variable selection results - comparison

Demographic variables	Agree or not	Literature
AGE	$\sqrt{ }$	Horuchi S. et al.,2010; Brown R.L., 1988
RAGENDER	$\sqrt{ }$	Rogers R.G., 1995; Travato, F., \& N. K. Lalu, 1998
RAEDUC	$\begin{aligned} & \sqrt{ } \\ & \times \end{aligned}$	Paula M.L. et al.,2010; Sorlie P.D. et al., 1995 Attanasio O.P., \& and C. Emmerson, 2001
RARACEM	$\begin{aligned} & \sqrt{ } \\ & \times \end{aligned}$	Kallan J., 1997; Attanasio O.P., \& and C. Emmerson, 2001 Williams D.R.\& C. Collins, 1995;Hummer R.A., 1996
RAVETRN	\checkmark	Alex H.S.H., \& C.E. Thoresen, 2005
RMARRY	$\begin{aligned} & \sqrt{ } \\ & \times \end{aligned}$	Hui Liu, 2009 ; Kaplan R.M., \& Richard H.K., 2006 Attanasio O.P., \& and C. Emmerson, 2001; Rogers R.G.,1995
CENREG	$\sqrt{ }$	Purushotham M., et al., 2011
HKIDS	\checkmark	Kotler P., \& D.L.Wingard, 1989

Health varialbes	Agree or not	Literature
HBP	$\sqrt{ }$	Gu Q. et al., 2007; National Vital Statistics Report, 2009
DIAB	$\sqrt{ }$	Shaista M. et al., 2004; National Vital Statistics Report, 2009
LUNG	$\sqrt{ }$	Mannino D.M., 2003; National Vital Statistics Report, 2009
HEART	$\sqrt{ }$	Shaista M. et al., 2004; National Vital Statistics Report, 2009
STROK	$\begin{aligned} & \sqrt{ } \\ & \times \end{aligned}$	National Vital Statistics Report, 2009 Joelle HY. Fong, 2010
PSYCH	\times	Joelle HY. Fong, 2010;
CANR	$\sqrt{ }$	National Vital Statistics Report, 2009
ARTHR	$\begin{aligned} & \sqrt{ } \\ & \times \end{aligned}$	Kroot E.J.A. et al., 2000 Doran M.F. et al., 2002; Avina Zubieta J.A. et al., 2008

Variable selection results - comparison

Lifestyle variables	Agree or not	Literature
VIGACT	$\sqrt{ }$	Doll R. et al., 2004; Steven N.B., 1996
DRINKR	$\sqrt{2}$ \times	Thun M.J. et al., 1997; Paula M.L. et al., 2010 Valliant G.E., \& K.Mukamal, 2001
BMI	$\sqrt{ }$	Campos et al., 2006; Sui et al., 2007 Wei et al., 1999;
SMOKEV	$\sqrt{ }$	Doll R. et al., 2004; Lantz et al., 1998

Financial variables	Agree or not	Literature
JPHYS	$\sqrt{2}$ \times	Valliant G.E., \& K. Mukamal, 2001 Brown R.L., 1997
HTOTW	\times	Attanasio O.P. et al., 2000; Menchik Paul 1993
HITOT	$\sqrt{2}$ \times	Moulton B.E. et al., 2012; Krieger N. et al., 2005 Blakely T. et al., 2003

Future work

- Enhance the variable selection process (e.g. Bayesian variable selection)
- Fit alternative parametric survival models for comparison purposes
- Incorporate missing data imputation methods
- Examination of financial or economic impact:
- the possibility of natural hedging between life insurance and life annuity products
- other insurance products such as long term care

