A Multilevel Analysis of Intercompany Claim Counts joint work with K. Antonio (Amsterdam) and E.W. Frees (Wisconsin)

Emiliano A. Valdez, University of Connecticut

43rd Actuarial Research Conference - *Regina, SK, Canada* August 14-16, 2008

University of Connecticut

Multilevel models

- Models that are extensions to regression whereby:
 - the data are generally structured in groups, and
 - the regression coefficients may vary according to the group.
- Multilevel refers to the nested structured of the data.
- Classical examples are usually derived from educational or behavioral studies:
 - e.g. students \in classes \in schools \in communities
- The basic unit of observation is the 'level 1' unit; then next level up is 'level 2' unit, and so on.
- Some references for multilevel models: Gelman & Hill (2007), Goldstein (2003), Raudenbusch & Byrk (2002), Kreft & De Leeuw (1995).

Analysis of intercompany frequency data

- Our paper examines an intercompany database using multilevel models. We focus analysis on claim counts.
- The empirical data consists of:
 - financial records of automobile insurers over 9 years (1993-2001), and
 - policy exposure and claims experience of randomly selected 10 insurers.
- Source of data: General Insurance Association (GIA) of Singapore
- The multilevel model accommodates clustering at four levels: vehicles (v) observed over time (t) that are nested within fleets (f), with policies issued by insurance companies (c).

The motivation to use multilevel models

- Multilevel models allows us to account for variation in claims at the individual level as well as for clustering at the company level.
 - intercompany data models are of interest to insurers, reinsurers, and regulators.
- It also allows us to examine the variation in claims across 'fleet' policies:
 - policies whose insurance covers more than a single vehicle e.g. taxicab company.
 - possible dependence of claims of automobiles within a fleet.
- In general, it allows us to assess the importance of cross-level effects.

Our contribution

- We develop the connection between hierarchical credibility and multilevel statistics, a discipline generally unknown in actuarial science.
 - We go beyond the 2-level structure often found in panel data.
- We extended applications (to more than two levels) of generalized count distribution models in actuarial science:
 - Poisson, Negative Binomial, Zero-inflated Poisson, Hurdle Poisson
- We provide modeling and detailed analysis of intercompany data on fleets which has been scarce in the actuarial literature.

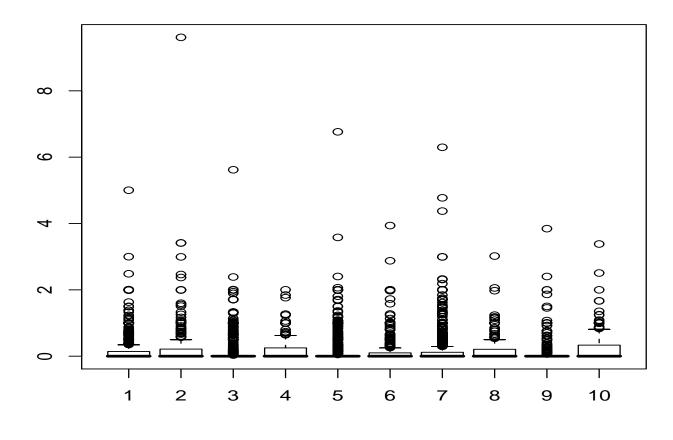
Data characteristics

			Таріс	H . C/C		<i>y</i> con	ipany				
	Percentage of Claims by Company										
Count	All	1	2	3	4	5	6	7	8	9	10
0	87.82	88.27	81.68	94.68	87.71	89.43	88.83	87.44	86.86	88.78	87.28
1	10.49	10.23	15.11	4.96	10.55	9.3	9.74	11.09	11.13	9.57	10.85
2	1.41	1.3	2.73	0.3	1.43	0.96	1.1	1.26	1.62	1.37	1.71
3	0.22	0.18	0.36	0.06	0.29	0.19	0.2	0.19	0.34	0.24	0.17
4	0.04	0.03	0.12	0	0	0.06	0.1	0.02	0.05	0.04	0
5	0.01	0	0	0	0.02	0.06	0.04	0	0	0	0
# Claims	5,557	528	1,096	191	603	398	669	891	318	328	535
# Obs.	39,120	3,920	4,951	3,327	4,191	3,225	5,105	6,251	2,040	2,487	3,623
<i>⋕</i> Exp.	30,560	3,106	4,440	2,480	3,240	2,497	3,978	5,023	1,635	1,505	2,656
Mean	0.14	0.17	0.25	0.08	0.19	0.16	0.17	0.18	0.19	0.22	0.20
# Fleet	6,763	841	270	1,229	270	1,279	646	1,286	335	268	339

Table 1: Claims by company

Figure 1

Average Claim Counts Per Fleet



Company

43rd Actuarial Research Conference

Vehicle level covariates

Categorical	Description		Per	centage			
Covariate							
Vehicle Type	Car			54%			
	Motor			41%			
	Truck			5%			
Private Use	Vehicle is used for private purposes			31%			
	Vehicle is used for other than private purposes			69%			
NCD	'No Claims Discount' at entry in fleet: based on	previous acc	ident				
	record of policyholder. The higher the discount, the better						
	the prior accident record.						
	NCD = 0			83%			
	NCD > 0			17%			
SwitchPol	1 if vehicle changes fleet			55%			
	0 if vehicle enters fleet for first time or		45%				
	stays in the same fleet						
Continuous		Minimum	Mean	Maximum			
Covariate							
Vehicle Age	The age of the vehicle in years, at entry in fleet	0	4.22	33			
Cubic Capacity	Vehicle capacity for cars and motors	124	1,615	6,750			
Tonnage	Vehicle capacity for trucks	1	7.6	61			
TLengthEntry	Time (in years) vehicle was	0	0.35	6.75			
	in the sample, before entering the fleet						
TLength	(Exposure) Fraction of calendar year for	0.006	0.78	1			
	which insurance coverage is purchased						

Table 3: Vehicle level explanatory variables

Fleet and company level covariates

Table 4: Fleet and company level explanatory variables

Covariate	Description	Minimum	Mean	Maximum
Fleet Level				
AvNCD	Average of No Claims Discount at entry	0	6.3	50
	in the fleet			
AvTLengthEntry	Average of TLengthEntry	0	0.59	6.75
AvTLength	Average of cumulative time period spent in fleet	0	1	3.64
AvVAge	Average of vehicle age at entry in the fleet	0	4.75	27.33
AvPrem	Average of premium paid per unit of exposure	0.01	1.3	59.56
FleetCap	Number of vehicles in the fleet	1	4.56	1,092
Company Level				
NumFleets	Number of fleets in the company	268	942	1,286
NumVeh	Number of vehicles in the company	1,319	3,084	5,394
NumCars,	Number of cars, trucks and motorcycles	391	1,652	4,453
NumTrucks,	in the company	224	1,259	3,019
NumMotors		0	170	888

Count distribution models

- (**Poisson**) $\Pr_{\mathsf{Poi}}(Y = y | \lambda) = \frac{\exp(-\lambda)\lambda^y}{y!};$
- (Negative binomial) $\Pr_{\mathsf{NB}}(Y = y | \mu, \tau) = \frac{\Gamma(y + \tau)}{y! \Gamma(\tau)} \left(\frac{\tau}{\mu + \tau}\right)^{\tau} \left(\frac{\mu}{\mu + \tau}\right)^{y};$
- (Zero-inflated Poisson)

$$\Pr_{\mathsf{ZIP}}(Y = y | p, \lambda) = \begin{cases} p + (1-p) \Pr_{\mathsf{Poi}}(Y = 0 | \lambda) & y = 0, \\ (1-p) \Pr_{\mathsf{Poi}}(Y = y | \lambda) & y > 0; \end{cases}$$

- (Hurdle Poisson)

$$\begin{aligned} \mathsf{Pr}_{\mathsf{Hur}}(Y=0|p,\lambda) &= p & y=0, \\ \mathsf{Pr}_{\mathsf{Hur}}(Y=y|p,\lambda) &= \frac{1-p}{1-\mathsf{Pr}_{\mathsf{Poi}}(0|\lambda)}\mathsf{Pr}_{\mathsf{Poi}}(Y=y|\lambda) & y>0. \end{aligned}$$

Antonio, K., Frees, E.W., and Valdez, E.A. – 10 / 17

Fitted models without covariates

Table 5: Observed and expected claim counts								
Num. Claims	Obs. Freq.	Poisson	NB	ZIP	Hurdle Poi			
0	34,357	33,940	34,362	34,357	34,357			
1	4,104	4,821	4,079	4,048	4,048			
2	551	342	577	641	641			
3	86	16	86	68	68			
4	17	1	13	5	5			
≥ 5	0	2	0	0				
Mean	0.142	0.142	0.142	0.142	0.142			
Variance	0.171	0.142	0.17	0.17	0.17			
-2 Log Lik	/	34,032	33,536	45,815	33,582			
AIC	/	34,034	33,540	45,819	33,586			

Antonio, K., Frees, E.W., and Valdez, E.A. – 11 / 17

Models considered

- Hierarchical Poisson models which include
 - Jewell's hierarchical model
- Hierarchical Negative Binomial model
- Hierarchical Zero-Inflated Poisson model
- Hierarchical Hurdle Poisson model

Model spec. of the hierarchical ZIP model

• While the specifications of all models considered are in the paper, here we focus on the hierarchical zero-inflated model.

 $\begin{array}{lll} Y_{c,f,v,t} & \sim & \mathsf{ZIP}(p,\lambda_{c,f,v,t}) \\ \text{where } \lambda_{c,f,v,t} & = & e_{c,f,v,t} \exp\left(\eta_{c,f,v,t} + \epsilon_c + \epsilon_{c,f}\right) \\ \text{and } \eta_{c,f,v,t} & := & \gamma + \mathbf{X}_c \boldsymbol{\beta}_4 + \mathbf{X}_{c,f} \boldsymbol{\beta}_3 + \mathbf{X}_{c,f,v} \boldsymbol{\beta}_2 + \mathbf{X}_{c,f,v,t} \boldsymbol{\beta}_1. \end{array}$

- Here γ is the intercept, ϵ_c is a random company effect, $\epsilon_{c,f}$ is a random effect for the fleet within the company and $\epsilon_{c,f,v}$ is a random effect for the vehicle within the fleet.
- The X's are the explanatory variables defined accordingly on page 15 of paper.

Comparing the fitted models

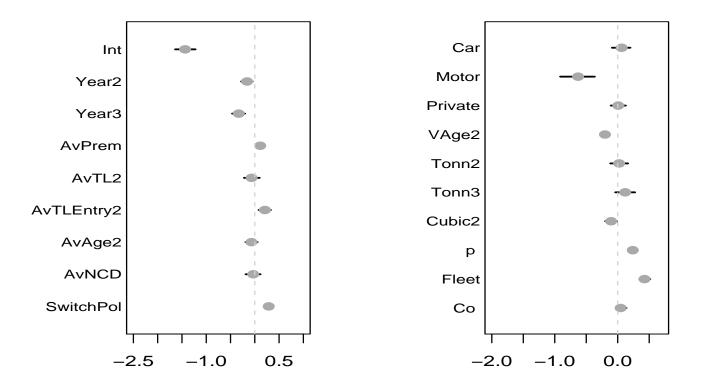
Table 9: Estimated claim counts obtained from Bayesian hierarchical

analyses							
Num. Claims	Obs. Freq.	Poisson	NB	ZIP	Hurdle Poi		
		(3)	(7)	(8)	(10)		
0	34,357	34,310	34,365	34,350	34,360		
		(34,200;34,430)	(34,240;34,490)	(34,230;34,470)	(34,230;34,480)		
1	4,104	4,176	4,086	4,092	4,139		
		(4,081;4,273)	(3,978;4,196)	(3,979;4,207)	(4,025;4,253)		
2	551	536	560	584	540		
		(511;560)	(532,588)	(551;618)	(505;576)		
3	86	79	88	79	73		
		(71,87)	(78,99)	(70;89)	(64;82)		
4	17	14	16	11	10		
		(11, 16)	(13,20)	(9;13)	(8;13)		
≥ 5	5	3	4	2	2		
		(2,4)	(2,4.5)	(1;2)	(1;2.4)		

Figure 3

95% credibility intervals for the hierarchical ZIP model

Cred. Int. Regr. Parms.



A Priori Premiums and A Posteriori University of Connecticut Corrections

	Ta	ble	<u> 11: Resi</u>	<u>ilts for</u>	the	e ZIP	model
Co.	Fleet	Vehicle	A Priori	A Posteriori	BMF	Acc. Cl.	Claim free
			(Exp.)			Fleet (Exp.)	Years
4	1,590	6,213	0.2156 (1)	0.3653	1.69	7 (15.25)	10.4
		6,261	0.2156 (1)	0.3653			
1	4,370	10,104	0.1404 (1)	0.218	1.56	7 (21.5)	16.5
		5,841	0.1404 (1)	0.218			
		7,152	0.1715 (1)	0.2663			
5	4,673	9,350	0.07942 (0.5)	0.106	1.33	6 (18.5)	17
		12,131	0.07942 (0.5)	0.106			
		12,210	0.07942 (0.5)	0.106			
4	6,592	1,656	0.1066 (1)	0.1898	1.78	12 (40)	32.3
		15,329	0.1099 (1)	0.1956			
		2,577	0.1302 (1)	0.2319			
2	1,485	11,122	0.01672 (0.08)	0.03961	2.4	17 (40)	31.7
		10,782	0.01223 (0.08)	0.02867			
		11,063	0.01494 (0.08)	0.03539			
3	4,672	12,007	0.06814 (0.334)	0.0705	1.03	5 (20.4)	16.1
		8,367	0.06814 (0.334)	0.0705			
		11,958	0.06814 (0.334)	0.0705			
5	1,842	1,826	0.1486 (1)	0.1244	0.84	2 (16)	14
		1,569	0.1486 (1)	0.1244			
6	5,992	1,906	0.1816 (1)	0.2333	1.28	7 (21)	16
		1,889	0.1816 (1)	0.2333			
9	5,823	1,020	0.1091 (1)	0.09044	0.83	2 (16)	14.25
		1,056	0.1091 (1)	0.09044			
		1,025	0.1091 (1)	0.09044			
10	3,564	15,564	0.1919 (1)	0.1475	0.77	2 (17)	15
		14,831	0.157 (1)	0.1207			
		15,194	0.157 (1)	0.1207			
10	3,568	1,119	0.1508 (1)	0.135	0.90	3 (19.25)	16.25
		1,206	0.1508 (1)	0.135		. ,	
		1,540	0.1508 (1)	0.135			

Note: 'Acc. Cl. Fleet' and 'Acc. Cl. Veh.' are accumulated number of claims at fleet and vehicle levels, respectively. 'Exp.' is exposure at year level, in parenthesis.

Concluding remarks

- This paper presents a multilevel analysis of a four-level intercompany data set on claim counts for fleet policies.
- We build multilevel models using generalized count distributions (Poisson, negative binomial, hurdle Poisson and zero-inflated Poisson) and use Bayesian estimation techniques.
- We find that in all models considered, there is the importance of accounting for the effects of the various levels.
- To demonstrate the usefulness of the models, we illustrate how a priori rating (using only a priori available information) and a posteriori corrections (taking the claims history into account) for intercompany data can be calculated on a sound statistical basis.