Longitudinal Modeling of Claim Counts using Jitters

joint work with Dr. Peng Shi, Northern Illinois University

The 16th International Congress on Insurance: Mathematics & Economics, University of Hong Kong, Hong Kong

28-30 June 2012

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Introduction

_.....

Modeling

Random effects models Copula models Continuous extension with iitters

Empirical analysis
Model specification

Singapore data

Inference

Variable selection
Estimation results
Model validation

Concluding remarks

Selected reference

Emiliano A. Valdez University of Connecticut, Storrs

Outline

1 Introduction

Literature

2 Modeling

Random effects models
Copula models
Continuous extension with jitters

3 Empirical analysis
Model specification

Singapore data

4 Inference

Variable selection Estimation results Model validation

5 Concluding remarks

6 Selected reference

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Introduction

Literature

Modeling

Random effects models
Copula models
Continuous extension with

jitters
Empirical analysis

Model specification
Singapore data

Inference

Variable selection Estimation results

Model validation

Concluding remarks

Emiliano A. Valdez

Introduction

Modeling

Random effects models

Copula models

Continuous extension with

iitters

Empirical analysis Model specification Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

• Assume we observe claim counts, N_{it} , for a group of policyholders i, for i = 1, 2, ..., m, in an insurance portfolio over T_i years.

- For each policyholder, the observable data is a vector of claim counts expressed as $(N_{i1}, \ldots, N_{iT_i})$.
- Data may be unbalanced: length of time T_i observed may differ among policyholders.
- Set of observable covariates x_{it} useful to sub-divide the portfolio into classes of risks with homogeneous characteristics.
- Here, we present an alternative approach to modeling longitudinal insurance claim counts using copulas and compare its performance with standard and traditional count regression models.

Literature

Modelina

Bandom effects models Copula models Continuous extension with iitters

Empirical analysis Model specification Singapore data

Inference

Variable selection Fetimation results Model validation

Concluding remarks

Selected reference

• Alternative models for longitudinal counts:

- Random effects models: the most popular approach
- Marginal models with serial correlation
- Autoregressive and integer-valued autoregressive models
- Common shock models
- Useful books on count regression
 - Cameron and Trivedi (1998): Regression Analysis of Count Data
 - Denuit et al. (2007): Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems
 - Frees (2009): Regression Modeling with Actuarial and Financial Applications
 - Winkelmann (2010): Econometric Analysis of Count Data
- The recent survey work of Boucher, Denuit and Guillén (2010) provides for a comparison of the various models.

Introduction

Literature

Modelina

Random effects models Copula models Continuous extension with iitters

Empirical analysis Model specification Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

- Copula regression for multivariate discrete data:
 - Increasingly becoming popular
 - Applications found in various disciplines:
 - Economics: Prieger (2002), Cameron et al. (2004), Zimmer and Trivedi (2006)
 - Biostatistics: Song et al. (2008), Madsen and Fang (2010)
 - Actuarial science: Purcaru and Denuit (2003), Shi and Valdez (2011)
 - Modeling longitudinal insurance claim counts:
 - Frees and Wang (2006): model joint pdf of latent variables
 - Boucher, Denuit and Guillén (2010): model joint pmf of claim counts
- Be pre-cautious when using copulas for multivariate discrete observations: non-uniqueness of the copula, vague interpretation of the nature of dependence. See Genest and Nešlehová (2007).
- We adopt an approach close to Madsen and Fang (2010): joint regression analysis.

ntroduction Literature

Modelina

Random effects models

Copula models

Continuous extension with itters

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

• To capture the intertemporal dependence within subjects, the most popular approach is to introduce a common random effect, say α_i , to each observation.

• The joint pmf for $(N_{i1}, \ldots, N_{iT_i})$ can be expressed as

$$\Pr(N_{i1} = n_{i1}, \dots, N_{iT_i} = n_{iT_i}) = \int_0^\infty \Pr(N_{i1} = n_{i1}, \dots, N_{iT_i} = n_{iT_i} | \alpha_i) f(\alpha_i) d\alpha_i$$

where $f(\alpha_i)$ is the density function of the random effect.

Typical assumption is conditional independence as follows:

$$\Pr(N_{i1} = n_{i1}, \dots, N_{iT_i} = n_{iT_i}|\alpha_i) =$$

$$\Pr(N_{i1} = n_{i1}|\alpha_i) \times \dots \times \Pr(N_{iT_i} = n_{iT_i}|\alpha_i).$$

Some known random effects models

- Poisson $N_{it} \sim \mathsf{Poisson}(\tilde{\lambda}_{it})$
 - $\tilde{\lambda}_{it} = \eta_i \lambda_{it} = \eta_i \omega_{it} \exp(\mathbf{x}'_{it}\beta)$, and $\eta_i \sim \text{Gamma}(\psi, \psi)$
 - $\tilde{\lambda}_{it} = \omega_{it} \exp(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})$, and $\alpha_i \sim \mathsf{N}(0, \sigma^2)$
- Negative Binomial
 - NB1: $1 + 1/\nu_i \sim \text{Beta}(a, b)$ $\Pr(N_{it} = n_{it}|\nu_i) = \frac{\Gamma(n_{it} + \lambda_{it})}{\Gamma(\lambda_{it})\Gamma(n_{it} + 1)} \left(\frac{\nu_i}{1 + \nu_i}\right)^{\lambda_{it}} \left(\frac{1}{1 + \nu_i}\right)^{n_{it}}$
 - NB2: $\alpha_i \sim N(0, \sigma^2)$ $\Pr(N_{it} = n_{it} | \alpha_i) = \frac{\Gamma(n_{it} + \psi)}{\Gamma(\psi)\Gamma(n_{it} + 1)} \left(\frac{\psi}{\tilde{\lambda}_{\alpha} + \psi}\right)^{\psi} \left(\frac{\tilde{\lambda}_{it}}{\tilde{\lambda}_{\alpha} + \psi}\right)^{n_{it}}$
- Zero-inflated models
 - $Pr(N_{it} = n_{it} | \delta_i, \alpha_i) = \begin{cases} \pi_{it} + (1 \pi_{it}) f(n_{it} | \alpha_i) & \text{if } n_{it} = 0 \\ (1 \pi_{it}) f(n_{it} | \alpha_i) & \text{if } n_{it} > 0 \end{cases}.$
 - $ullet \log\left(rac{\pi_{it}}{1-\pi_{it}}\Big|\delta_{i}
 ight)=\delta_{i}+\mathbf{z}_{it}^{'}oldsymbol{\gamma},$
 - ZIP ($f \sim \text{Poisson}$) and ZINB ($f \sim \textit{NB}$)

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Introduction Literature

Modelina

Random effects models

Copula models

Continuous extension with

jitters
Empirical analysis

Model specification

Singapore data Inference

Variable selection Estimation results Model validation

Concluding remarks

Literature

Modelina

Random effects models Copula models

Continuous extension with iitters

Empirical analysis Model specification Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Joint pmf using copula:

$$\Pr(N_{i1} = n_{i1}, \dots, N_{iT} = n_{iT}) = \sum_{j_1=1}^{2} \dots \sum_{j_T=1}^{2} (-1)^{j_1 + \dots + j_T} C(u_{1j_1}, \dots, u_{Tj_T})$$

Here, $u_{t1} = F_{it}(n_{it})$, $u_{t2} = F_{it}(n_{it} - 1)$, and F_{it} denotes the distribution of N_{it}

- Downside of the above specification:
 - contains 2^T terms and becomes unmanageable for large T
 - involves high-dimensional integration
 - other critiques for the case of multivariate discrete data: see Genest and Něslehová (2007)

Modelina

Random effects models
Copula models
Continuous extension with

Continuous extension with jitters

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

- Define $N_{it}^* = N_{it} U_{it}$ where $U_{it} \sim \text{Uniform}(0, 1)$
- The joint pdf of jittered counts for the *i*th policyholder $(N_{i1}^*, N_{i2}^*, \dots, N_{iT}^*)$ may be expressed as:

$$f_i^*(n_{i1}^*,\ldots,n_{iT}^*)=c(F_{i1}^*(n_{i1}^*),\ldots,F_{iT}^*(n_{iT}^*);\theta)\prod_{t=1}^{I}f_{it}^*(n_{it}^*)$$

 Retrieve the joint pmf of (N_{i1},..., N_{iT}) by averaging over the jitters:

$$f_{i}(n_{i1},...,n_{iT}) = \\ \mathbb{E}_{U_{i}} \left[c(F_{i1}^{*}(n_{i1} - U_{i1}),...,F_{iT}^{*}(n_{iT} - U_{iT});\theta) \prod_{t=1}^{T} f_{it}^{*}(n_{it} - U_{it}) \right]$$

- Based on relations:
 - $F_{it}^*(n) = F_{it}([n]) + (n-[n])f_{it}([n+1])$
 - $f_{it}^*(n) = f_{it}([n+1])$

$$f_{it}(n) = \Pr(N_{it} = n) = \frac{\Gamma(n + \psi)}{\Gamma(\psi)\Gamma(n + 1)} \left(\frac{\psi}{\lambda_{it} + \psi}\right)^{\psi} \left(\frac{\lambda_{it}}{\lambda_{it} + \psi}\right)^{n},$$

with $\lambda_{it} = \exp(\mathbf{x}_{it}^{'}\boldsymbol{\beta})$.

 Consider elliptical copulas for the jittered counts and examine three dependence structure (e.g. T = 4):

$$\begin{aligned} & \text{autoregressive: } \Sigma_{AR} = \begin{pmatrix} 1 & \rho & \rho^2 & \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 & \rho^2 & \rho & 1 & \rho \\ \end{pmatrix} \\ & \text{exchangeable: } \Sigma_{EX} = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix} \\ & \text{Toeplitz: } \Sigma_{TOEP} = \begin{pmatrix} 1 & \rho_1 & \rho_2 & 0 \\ \rho_1 & 1 & \rho_1 & \rho_2 & 0 \\ \rho_2 & \rho_1 & 1 & \rho_1 \\ \rho_2^2 & \rho_1 & 1 & \rho_1 \\ \end{pmatrix}$$

- Likelihood based method is used to estimate the model.
- A large number of simulations are used to approximate the likelihood.

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Literature

iitters

Modelina

Bandom effects models Copula models Continuous extension with

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Literature

Modelina

Bandom effects models Copula models Continuous extension with iitters

Empirical analysis

Model specification Singapore data

Inference

Variable selection Fetimation results Model validation

Selected reference

Concluding remarks

- For our empirical analysis, claims data are obtained from an automobile insurance company in Singapore
- Data was over a period of nine years 1993-2001.
- Data for years 1993-2000 was used for model calibration; year 2001 was our hold-out sample for model validation.
- Focus on "non-fleet" policy
- Limit to policyholders with comprehensive coverage

Number and Percentage of Claims by Count and Year

Percentage by Year										Overall	
Count	1993	1994	1995	1996	1997	1998	1999	2000	2001	Number	Percent
0	88.10	85.86	85.21	83.88	90.41	85.62	86.89	87.18	89.71	3480	86.9
1	10.07	12.15	13.13	14.29	8.22	13.73	11.59	11.54	9.71	468	11.7
2	1.47	2.00	1.25	1.83	0.00	0.65	1.37	0.92	0.57	50	1.25
3	0.37	0.00	0.21	0.00	1.37	0.00	0.15	0.18	0.00	6	0.15
4	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.18	0.00	2	0.05
Number	546	601	480	273	73	306	656	546	525	4006	100

vehicle characteristics: age, brand, model, make

policyholder characteristics: age, gender, marital status

experience rating scheme: no claim discount (NCD)

Number and Percentage of Claims by Age, Gender and NCD

		Percenta	Ove	rall			
	0	1	2	3	4	Number	Percent
Person Age (in year	rs)						
25 and younger	73.33	23.33	3.33	0.00	0.00	30	0.75
26-35	87.49	11.12	1.19	0.10	0.10	1007	25.14
36-45	86.63	11.80	1.35	0.17	0.06	1780	44.43
46-60	86.85	11.92	1.05	0.18	0.00	1141	28.48
60 and over	91.67	6.25	2.08	0.00	0.00	48	1.20
Gender							
Female	91.49	7.98	0.53	0.00	0.00	188	4.69
Male	86.64	11.86	1.28	0.16	0.05	3818	95.31
No Claims Discour	t (NCD)						
0	84.83	13.17	1.61	0.26	0.13	1549	38.67
10	86.21	12.58	1.20	0.00	0.00	747	18.65
20	89.21	9.25	1.54	0.00	0.00	584	14.58
30	89.16	9.49	1.08	0.27	0.00	369	9.21
40	88.60	11.40	0.00	0.00	0.00	193	4.82
50	88.83	10.46	0.53	0.18	0.00	564	14.08
Number by Count	3480	468	50	6	2	4006	100

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Literature

Modelina

Random effects models Copula models Continuous extension with jitters

Empirical analysis Model specification

Singapore data Inference

Variable selection Estimation results Model validation

Concluding remarks

Variable selection

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Introduction

Literature

Modeling

Random effects models

Copula models

Continuous extension with

jitters
Empirical analysis

Model specification Singapore data

Inference

Variable selection

Estimation results

Concluding remarks

Selected reference

Preliminary analysis chose:

young: 1 if below 25, 0 otherwise

 midfemale: 1 if mid-aged (between 30-50) female drivers, 0 otherwise

zeroncd: 1 if zero ncd, 0 otherwise

vage: vehicle age

vbrand1: 1 for vehicle brand 1
vbrand2: 1 for vehicle brand 2

 Variable selection procedure used is beyond scope of our work.

Introduction

Literature

Modeling

Random effects models Copula models Continuous extension with jitters

Empirical analysis Model specification

Singapore data Inference

Variable selection Estimation results

Model validation

Concluding remarks

Selected reference

Emiliano A. Valdez

	RE-Poisson		RE-Ne	RE-NegBin		ZIP	RE-Z	RE-ZINB	
Parameter	Estimate	<i>p</i> -value	Estimate	<i>p</i> -value	Estimate	<i>p</i> -value	Estimate	<i>p</i> -value	
intercept	-1.7173	<.0001	1.6404	0.1030	-1.6780	<.0001	-1.7906	<.0001	
young	0.6408	0.0790	0.6543	0.0690	0.6232	0.0902	0.6371	0.0853	
midfemale	-0.7868	0.0310	-0.7692	0.0340	-0.7866	0.0316	-0.7844	0.0319	
zeroncd	0.2573	0.0050	0.2547	0.0060	0.2617	0.0051	0.2630	0.0050	
vage	-0.0438	0.0210	-0.0442	0.0210	-0.0436	0.0227	-0.0438	0.0224	
vbrand1	0.5493	<.0001	0.5473	<.0001	0.5481	<.0001	0.5478	<.0001	
vbrand2	0.1831	0.0740	0.1854	0.0710	0.1813	0.0777	0.1827	0.0755	
LogLik	-1498.40		-149	-1497.78		-1498.00		-1497.50	
AIC	3012	3012.81		3013.57		3016.00		3017.00	
BIC	3056.41		3062	3062.62		3070.50		3077.00	

Estimates of standard longitudinal count regression models

Estimates of copula model with various dependence structures

	AR(E	Exchangeable			Toeplitz(2)			
Parameter	Estimate	StdErr	Esti	mate	StdErr		Estimate	StdErr	
intercept	-1.8028	0.0307	-1.8	8422	0.0353		-1.7630	0.0284	
young	0.6529	0.0557	0.	7130	0.0667		0.6526	0.0631	
midfemale	-0.6956	0.0588	-0.	6786	0.0670		-0.7132	0.0596	
zeroncd	0.2584	0.0198	0.3	2214	0.0172		0.2358	0.0176	
vage	-0.0411	0.0051	-0.	0422	0.0056		-0.0453	0.0042	
vbrand1	0.5286	0.0239	0.	5407	0.0275		0.4962	0.0250	
vbrand2	0.1603	0.0166	0.	1752	0.0229		0.1318	0.0198	
ϕ	2.9465	0.1024	2.	9395	0.1130		2.9097	0.1346	
ρ_1	0.1216	0.0028	0.	1152	0.0027		0.1175	0.0025	
ρ_2							0.0914	0.0052	
LogLik	-1473.25			-1454.04			-1468.74		
AIC	2964.49			2926.08			2957.49		
BIC	BIC 3013.55			2975.13			3011.99		

Modeling

Random effects models Copula models Continuous extension with iitters

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results

Model validation

Concluding remarks

Selected reference

Copula validation

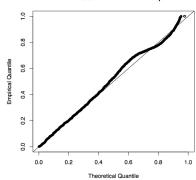
- The specification of the copula is validated using t-plot method as suggested in Sun et al. (2008) and Shi (2010).
- In a good fit, we would expect to see a linear relationship in the t-plot.
- Out-of-sample validation: based on predictive distribution calculated using

$$\begin{split} f_{iT+1} \big(n_{iT+1} \big| n_{i1}, \dots, n_{iT} \big) \\ &= \text{Pr} \big(N_{iT+1} = n_{iT+1} \big| N_{i1} = n_{i1}, \dots, N_{iT} = n_{iT} \big) \\ &= \frac{\varepsilon_{\boldsymbol{U}_i} \left[c(F_{i1}^*(n_{i1} - U_{i1}), \dots, F_{iT}^*(n_{iT} - U_{iT}), F_{iT+1}^*(n_{iT+1} - U_{iT+1}); \boldsymbol{\theta}) \prod_{t=1}^{T+1} f_{it}^*(n_{it} - U_{it}) \right]}{\varepsilon_{\boldsymbol{U}_i} \left[c(F_{i1}^*(n_{i1} - U_{i1}), \dots, F_{iT}^*(n_{iT} - U_{iT}); \boldsymbol{\theta}) \prod_{t=1}^{T} f_{it}^*(n_{it} - U_{it}) \right]} \end{split}$$

- Performance measures used:
 - LogLik = $\sum_{i=1}^{M} \log (f_{iT+1}(n_{iT+1}|n_{i1},\cdots,n_{iT}))$
 - MSPE = $\sum_{i=1}^{M} [n_{iT+1} E(N_{iT+1}|N_{i1} = n_{i1}, \cdots, N_{iT} = n_{iT})]^2$
 - MAPE = $\sum_{i=1}^{M} |n_{iT+1} E(N_{iT+1}|N_{i1} = n_{i1}, \cdots, N_{iT} = n_{iT})|$

Results of model validation

t-plot



Out-of-sample validation

	Standar	d Model		Copula Model					
	RE-Poisson	RE-NegBin	AR(1)	Exchangeable	Toeplitz(2)				
LogLik	-177.786	-177.782	-168.037	-162.717	-165.932				
MSPE	0.107	0.107	0.108	0.105	0.110				
MAPE	0.213	0.213	0.197	0.186	0.192				

Longitudinal Modeling of Claim Counts using Jitters

Emiliano A. Valdez

Introduction

Literature

Modeling

Random effects models
Copula models
Continuous extension with
jitters

Empirical analysis

Model specification Singapore data

Inference

Variable selection Estimation results

Model validation

Concluding remarks

ntroduction Literature

.

Modeling

Random effects models Copula models Continuous extension with jitters

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results

oncluding remarks

Selected reference

 We examined an alternative way to model longitudinal count based on copulas:

- employed a continuous extension with jitters
- method preserves the concordance-based association measures
- The approach avoids the criticisms often made with using copulas directly on multivariate discrete observations.
- For empirical demonstration, we applied the approach to a dataset from a Singapore auto insurer. Our findings show:
 - better fit when compared with random-effect specifications
 - validated the copula specification based on t-plot and its performance based on hold-out observations
- Our contributions to the literature: (1) application to insurance data, and (2) application to longitudinal count data.

ntroduction Literature

Literature

Modeling

Random effects models
Copula models
Continuous extension with
iitters

Empirical analysis Model specification

Singapore data Inference

Variable selection Estimation results Model validation

Concluding remarks

elected reference

Denuit, M. and P. Lambert (2005). Constraints on concordance measures in bivariate discrete data. *Journal of Multivariate Analysis*, 93(1), 40-57.

Genest, C. and J. Nešlehová (2007). A primer on copulas for count data. ASTIN Bulletin, 37(2), 475-515.

Hausman, J., B. Hall, and Z. Griliches (1984). Econometric models for count data with an application to the patents-r&d relationship. *Econometrica*, 52(4), 909-938.

Madsen, L. and Y. Fang (2010). Joint regression analysis for discrete longitudinal data. *Biometrics*. Early view.

Song, P., M. Li, and Y. Yuan (2009). Joint regression analysis of correlated data using Gaussian copulas. *Biometrics*, 65(1), 60-68.

Sun, J., E. W. Frees, and M. A. Rosenberg (2008). Heavy-tailed longitudinal data modeling using copulas. *Insurance: Mathematics and Economics*, 42(2), 817-830.